20 research outputs found

    Implementation of an Interior Point Method with Basis Preconditioning

    Get PDF

    Rank revealing Gaussian elimination by the maximum volume concept

    Get PDF
    A Gaussian elimination algorithm is presented that reveals the numerical rank of a matrix by yielding small entries in the Schur complement. The algorithm uses the maximum volume concept to find a square nonsingular submatrix of maximum dimension. The bounds on the revealed singular values are similar to the best known bounds for rank revealing LU factorization, but in contrast to existing methods the algorithm does not make use of the normal matrix. An implementation for dense matrices is described whose computational cost is roughly twice the cost of an LU factorization with complete pivoting. Because of its flexibility in choosing pivot elements, the algorithm is amenable to implementation with blocked memory access and for sparse matrices

    Basis preconditioning in interior point methods

    Get PDF
    Solving normal equations AAᔀx = b, where A is an m x n matrix, is a common task in numerical optimization. For the efficient use of iterative methods, this thesis studies the class of preconditioners of the form BBᔀ , where B is a nonsingular "basis" matrix composed of m columns of A. It is known that for any matrix A of full row rank B can be chosen so that the entries in [B⁻ÂčA] are bounded by 1. Such a basis is said to have "maximum volume" and its preconditioner bounds the spectrum of the transformed normal matrix in the interval [1, 1+mn]. The theory is extended to (numerically) rank deficient matrices, yielding a rank revealing variant of Gaussian elimination and a method for computing the minimum norm solution for x from a reduced normal system and a low-rank update. Algorithms for finding a maximum volume basis are discussed. In the linear programming interior point method a sequence of normal equations needs to be solved, in which A changes by a column scaling from one system to the next. A heuristical algorithm is proposed for maintaining a basis of approximate maximum volume by update operations as those in the revised simplex method. Empirical results demonstrate that the approximation means no loss in the effectiveness of the preconditioner, but makes basis selection much more efficient. The implementation of an interior point solver based on the new linear algebra is described. Features of the code include the elimination of free variables during preconditioning and the removal of degenerate variables from the optimization process once sufficiently close to a bound. A crossover method recovers a vertex solution to the linear program, starting from the basis at the end of the interior point solve. A computational study shows that the implementation is robust and of general applicability, and that its average performance is comparable to that of state-of-the-art solvers

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Small RNAs as biomarkers to differentiate benign and malign prostate diseases: An alternative for transrectal punch biopsy of the prostate?

    No full text
    Prostate cancer (PCa) is the most common cancer and the third most frequent cause of male cancer death in Germany. MicroRNAs (miRNA) appear to be involved in the development and progression of PCa. A diagnostic differentiation from benign prostate hyperplasia (BPH) is often only possible through transrectal punch biopsy. This procedure is described as painful and carries risks. It was investigated whether urinary miRNAs can be used as biomarkers to differentiate the prostate diseases above. Therefore urine samples from urological patients with BPH (25) or PCa (28) were analysed using Next-Generation Sequencing to detect the expression profile of total and exosomal miRNA/piRNA. 79 miRNAs and 5 piwi-interacting RNAs (piRNAs) were significantly differentially expressed (adjusted p-value 1 or = 0.7). In addition, machine-learning algorithms were used to identify a panel of 22 additional miRNAs, whose interaction makes it possible to differentiate the groups as well. There are promising individual candidates for potential use as biomarkers in prostate cancer. The innovative approach of applying machine learning methods to this kind of data could lead to further small RNAs coming into scientific focus, which have so far been neglected

    CIMT 2022: Report on the 19th Annual Meeting of the Association for Cancer Immunotherapy

    No full text
    The 19th Annual Meeting of the Association for Cancer Immunotherapy (CIMT), Europe’s cancer immunotherapy meeting, was the first in-person event organized by CIMT since the beginning of the COVID-19 pandemic. As a hybrid event from May 10–12, the meeting attracted 920 academic and clinical professionals from over 40 countries, who met to discuss the latest advances in cancer immunology and immunotherapy research. This report summarizes the highlights of CIMT2022

    Protein variability in cerebrospinal fluid and its possible implications for neurological protein biomarker research.

    No full text
    Cerebrospinal fluid is investigated in biomarker studies for various neurological disorders of the central nervous system due to its proximity to the brain. Currently, only a limited number of biomarkers have been validated in independent studies. The high variability in the protein composition and protein abundance of cerebrospinal fluid between as well as within individuals might be an important reason for this phenomenon. To evaluate this possibility, we investigated the inter- and intraindividual variability in the cerebrospinal fluid proteome globally, with a specific focus on disease biomarkers described in the literature. Cerebrospinal fluid from a longitudinal study group including 12 healthy control subjects was analyzed by label-free quantification (LFQ) via LC-MS/MS. Data were quantified via MaxQuant. Then, the intra- and interindividual variability and the reference change value were calculated for every protein. We identified and quantified 791 proteins, and 216 of these proteins were abundant in all samples and were selected for further analysis. For these proteins, we found an interindividual coefficient of variation of up to 101.5% and an intraindividual coefficient of variation of up to 29.3%. Remarkably, these values were comparably high for both proteins that were published as disease biomarkers and other proteins. Our results support the hypothesis that natural variability greatly impacts cerebrospinal fluid protein biomarkers because high variability can lead to unreliable results. Thus, we suggest controlling the variability of each protein to distinguish between good and bad biomarker candidates, e.g., by utilizing reference change values to improve the process of evaluating potential biomarkers in future studies

    Protein variability in cerebrospinal fluid and its possible implications for neurological protein biomarker research

    No full text
    Cerebrospinal fluid is investigated in biomarker studies for various neurological disorders of the central nervous system due to its proximity to the brain. Currently, only a limited number of biomarkers have been validated in independent studies. The high variability in the protein composition and protein abundance of cerebrospinal fluid between as well as within individuals might be an important reason for this phenomenon. To evaluate this possibility, we investigated the inter- and intraindividual variability in the cerebrospinal fluid proteome globally, with a specific focus on disease biomarkers described in the literature. Cerebrospinal fluid from a longitudinal study group including 12 healthy control subjects was analyzed by label-free quantification (LFQ) via LC-MS/MS. Data were quantified via MaxQuant. Then, the intra- and interindividual variability and the reference change value were calculated for every protein. We identified and quantified 791 proteins, and 216 of these proteins were abundant in all samples and were selected for further analysis. For these proteins, we found an interindividual coefficient of variation of up to 101.5% and an intraindividual coefficient of variation of up to 29.3%. Remarkably, these values were comparably high for both proteins that were published as disease biomarkers and other proteins. Our results support the hypothesis that natural variability greatly impacts cerebrospinal fluid protein biomarkers because high variability can lead to unreliable results. Thus, we suggest controlling the variability of each protein to distinguish between good and bad biomarker candidates, e.g., by utilizing reference change values to improve the process of evaluating potential biomarkers in future studies

    Challenges and opportunities for innovation in bioinformed sustainable materials

    No full text
    Nature provides a rich source of information for the design of novel materials; yet there remain significant challenges in the design and manufacture of materials that replicate the form, function, and sustainability of biological solutions. Here, we identify key challenges and promising approaches to the development of materials informed by biology. These challenges fall into two main areas; the first relates to harnessing biological information for materials innovation, including key differences between biological and synthetic materials, and the relationship between structure and function. We propose an approach to materials innovation that capitalizes on biodiversity, together with high-throughput characterization of biological material architectures and properties, linked to environmental and ecological context. The second area relates to the design and manufacture of bioinformed materials, including the physical scale of material architectures and manufacturing scale up. We suggest ways to address these challenges and promising prospects for a bioinformed approach to materials innovation
    corecore