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A Gaussian elimination algorithm is presented that reveals
the numerical rank of a matrix and identifies a square
nonsingular submatrix of maximum dimension. The bounds
on the singular values of the submatrix and its Schur
complement are similar to the best known bounds for
rank revealing LU factorization, but in contrast to existing
methods the algorithm does not make use of the normal
matrix. An implementation for dense matrices is described
whose computational cost is roughly twice the cost of an LU

factorization with complete pivoting. Because of its flexibility
in choosing pivot elements, the algorithm is amenable to
implementation with blocked memory access and for sparse
matrices.

© 2019 Published by Elsevier Inc.

1. Introduction

This paper is concerned with the problem to determine the rank of a matrix in the

numerical sense and to identify a square nonsingular submatrix of maximum dimension.

Given A ∈ R
m×n and a tolerance ε > 0, the task is to determine an index r such that

* Corresponding author.
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σr ≥ ε and σr+1 = O(ε), where σ1 ≥ . . . ≥ σd ≥ 0 (d = min(m, n)) are the singular values

of A and σd+1 := 0. Our definition of numerical rank relaxes the condition σr ≥ ε > σr+1,

which would be achievable only by computing the singular values. In addition to the rank

r, we want to identify an r × r submatrix of A whose minimum singular value is not too

much smaller than σr.

The stated problem arises, for example, in computing null space bases of large and

sparse matrices. Suppose that A =

[

A11 A12

A21 A22

]

has rank r and that A11 is r × r non-

singular. Then the Schur complement A/A11 = A22 − A21A−1
11 A12 is all zero and the

columns of Z :=

[

−A−1
11 A12

In−r

]

form a basis for the null space of A. (Here and in the

sequel Ik denotes the identity matrix of dimension k.) When instead A has numerical

rank r, one may wish to find a submatrix A11 of dimension r so that ‖A/A11‖ = O(ε),

making Z a null space basis for an ε-perturbation of A. This allows to extend the null

space method for solving KKT systems [11, Section 16.3] to the case where the constraint

matrix is numerically rank deficient. Such systems arise from rank deficient least squares

problems and in nonlinear optimization when the constraint normals at the current point

are (close to) linearly dependent. Because the matrices in these applications are typi-

cally large and sparse, methods based on orthogonal factorizations can be unacceptably

expensive in terms of computation time and memory requirement. We are therefore in-

terested in solving the above problem by Gaussian elimination, which is generally better

suited for sparse matrices.

It is well known that Gaussian elimination with complete pivoting may not detect a

near singularity. For the example from [13],

A =













1 −1 · · · −1 −1
1 −1

. . .
...

1 −1
1













∈ R
m×m, (1)

complete pivoting allows to choose the diagonal elements as pivots, so that no elim-

inations are needed and A is determined to be of full rank. It is not revealed that

σm(A) = O(2−m) (see [12, Section 5]) and the numerical rank of A to be m − 1 for m

moderately large.

A method based on Gaussian elimination that does reveal the rank and identifies a

submatrix with the desired properties was described by Pan [12]. The method employs

the “maximum volume” criterion, firstly to choose a column subset of A and then to

choose a square submatrix within these columns. The concept of maximum volume has

been used before in rank revealing factorizations and related topics, see [7–10,12] and

the references therein. The issue with Pan’s method is that choosing the column subset

requires operations with the inverse of normal matrices AT
J AJ , where J is an index set

that is updated by a pivot rule and AJ denotes the matrix composed of the corresponding
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columns of A. Although it is possible to implement these operations in the sparse case

through Cholesky factorization [3], the computations can be much more expensive than

operations with the inverse of a square submatrix of A.

The algorithm presented in this paper avoids operations with normal matrices. In-

stead, it selects an m×m “basis” matrix AB of local maximum volume in A = [A βIm ]

for a suitably chosen scalar β > 0. A square submatrix of A will then be defined by means

of the columns of A and the columns of βIm which compose AB. The advantage of the

new method is that it can be implemented by updating a sparse LU factorization after

column changes to the basis matrix, which is a common operation in linear programming

for which computationally efficient techniques exist [4].

It will be shown that the obtained submatrix A11 satisfies

‖A/A11‖max ≤ β and
∥

∥A−1
11

∥

∥

max
≤ β−1,

where ‖·‖max is the maximum absolute entry of a matrix. Furthermore, for β =

min(m, n)ε the dimension r of A11 will reveal the numerical rank of A. We will de-

rive a lower bound on σmin(A11) and an upper bound on ‖A/A11‖2 in terms of σr(A)

and σr+1(A), which are very similar to the bounds proved for Pan’s method [12]. Applied

to the matrix (1), the algorithm selects the upper right (m − 1) × (m − 1) block as A11,

for which σmin(A11) ≈ σm−1(A) and ‖A/A11‖2 = O(2−m).

Throughout the paper A is an m×n matrix and A11 is a square nonsingular submatrix.

It is assumed that A has been permuted so that

A =

[

A11 A12

A21 A22

]

. (2)

The Schur complement of A11 in A is

A/A11 = A22 − A21A−1
11 A12.

σk(·) and σmin(·) denote the k-th largest and the minimum singular value of a matrix.

‖·‖2 and ‖·‖max are the maximum singular value and the maximum absolute entry of a

matrix, which satisfy the relation

‖A‖max ≤ ‖A‖2 ≤ √
mn ‖A‖max .

Ordered index sets are denoted by calligraphic letters. Jp means the p-th index in the

set and AJ is the matrix composed of the columns of A indexed by J . A basis B for

A ∈ R
m×(n+m) is an index set such that the basis matrix AB is square and nonsingular

(requiring that A has rank m). Associated with B is the nonbasic set N = {1, . . . , n+m}\
B. Vectors are notated in bold lower case, where ej is the j-th unit vector. Expressions

like |A| and |b| are meant componentwise.
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2. Maximum volume concept

The volume of a matrix of arbitrary dimension and rank was introduced in [1]. This

paper uses the definition from [12], which differs in that the volume of a rank deficient

matrix is zero.

Definition 2.1. For A ∈ R
m×n with singular values σ1 ≥ . . . ≥ σd ≥ 0 (d = min(m, n)),

the volume of A is defined by

vol(A) = σ1 · · · σd.

In particular, the volume of a square matrix is the absolute value of its determinant.

Definition 2.2. Let A ∈ R
m×n and ρ ≥ 1.

(i) Let B be a k × k submatrix of A. vol(B)(6= 0) is said to be a global ρ-maximum

volume in A if

ρ vol(B) ≥ vol(B′) (3)

for all k × k submatrices B′ of A.

(ii) Let B be formed by k columns (rows) of A. vol(B)(6= 0) is said to be a local

ρ-maximum volume in A if (3) holds for any B′ that is obtained by replacing one

column (row) of B by a column (row) of A which is not in B.

(iii) Let B be a k × k submatrix (k < min(m, n)) of A. vol(B)(6= 0) is said to be a local

ρ-maximum volume in A if it is a global ρ-maximum volume in all (k + 1) × (k + 1)

submatrices of A which contain B.

The important concept in the theory of rank revealing factorizations is the local

maximum volume. The Definition 2.2(ii) is from [12] and 2.2(iii) is the natural extension

to square submatrices of any dimension. It is equivalent to saying that A11 has local

ρ-maximum volume in (2) if the volume of the (1, 1) block cannot be increased by more

than a factor ρ by interchanging two columns and/or two rows.

Finding a submatrix of local maximum volume will make use of column and row

exchanges. The following lemmas provide formulas for the change of volume when a

column and/or row is replaced in a square nonsingular matrix.

Lemma 2.3. Let A11 be k × k nonsingular and A′
11 be obtained by replacing column j by

the vector b. Then

vol(A′
11)

vol(A11)
= |A−1

11 b|j .
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In particular, A11 in (2) has local ρ-maximum volume in its block row and block column

if and only if
∥

∥A−1
11 A12

∥

∥

max
≤ ρ and

∥

∥A21A−1
11

∥

∥

max
≤ ρ, respectively.

Proof. Follows immediately from Cramer’s rule, by which the column replacement

changes det(A11) by the factor
(

A−1
11 b

)

j
. ✷

Lemma 2.4. Let Â be square and nonsingular and B be obtained by removing row i and

column j. Then

vol(B)

vol(Â)
= |Â−1|ji.

In particular, B has ρ-maximum volume in Â if and only if ρ|Â−1|ji ≥
∥

∥

∥
Â−1

∥

∥

∥

max
.

Proof. By Cramer’s rule

(Â−1)ji = (Â−1ei)j =
det(Â − ÂejeT

j + eie
T
j )

det(Â)
.

Because the matrix whose determinant is taken in the numerator has unit column ei in

position j, by Laplace’s formula

det(Â − ÂejeT
j + eie

T
j ) = (−1)i+j det(B).

Substituting into the previous expression and taking absolute values completes the

proof. ✷

Lemma 2.5. Let A11 be k × k nonsingular and

Â =

[

A11 b
cT α

]

. (4)

Let γ = Â/A11 and A′′
11 be the leading k × k block of Â after interchanging columns k + 1

and j (1 ≤ j ≤ k) and rows k + 1 and i (1 ≤ i ≤ k). Then

vol(A′′
11)

vol(A11)
= |γ(A−1

11 )ji + (A−1
11 b)j(A−T

11 c)i|. (5)

Proof. First, consider that Â is singular, in which case rank(Â) = k and γ = 0. If

|A−1
11 b|j = 0, then the first k columns of Â after the interchanges have rank k − 1. Hence

A′′
11 must be singular and both sides of (5) are zero. Otherwise let A′

11 be obtained from

A11 by replacing column j by the vector b. Then, by Lemma 2.3,

vol(A′
11) = vol(A11)|A−1

11 b|j .



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E
D

 P
R

O
O

F

Please cite this article in press as: L. Schork, J. Gondzio, Rank revealing Gaussian elimination by the
maximum volume concept, Linear Algebra Appl. (2020), https://doi.org/10.1016/j.laa.2019.12.037

JID:LAA AID:15235 /FLA [m1L; v1.261; Prn:6/01/2020; 8:23] P.6 (1-19)

6 L. Schork, J. Gondzio / Linear Algebra and its Applications ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Let c′ be obtained from c be replacing the j-th entry by α. Because Â is singular,

(A′
11)−T c′ = A−T

11 c.

Therefore, by Lemma 2.3,

vol(A′′
11) = vol(A′

11)|(A′
11)−T c′|i

= vol(A11)|A−1
11 b|j |A−T

11 c|i.

Second, consider that Â is nonsingular, in which case γ 6= 0. Then

Â−1 =

[

H f
gT γ−1

]

, (6)

where

f = −γ−1A−1
11 b,

g = −γ−1A−T
11 c,

H = A−1
11 + γfgT .

It follows from Lemma 2.4 that

vol(A11) = |γ−1| vol(Â),

vol(A′′
11) = |Hji| vol(Â).

Therefore

vol(A′′
11)

vol(A11)
=

|(A−1
11 )ji + γ−1(A−1

11 b)j(A−T
11 c)i|

|γ−1|
= |γ(A−1

11 )ji + (A−1
11 b)j(A−T

11 c)i|. ✷

3. Rank revealing algorithm

In this section we present the algorithm for selecting the submatrix A11 and prove

that the dimension of A11 reveals the numerical rank of A. Instead of selecting the row

and column subsets directly, the algorithm selects a basis matrix of A = [A βIm ] for

a given β > 0. The columns of A and βIm in A are termed “structural” and “logical”,

respectively. Letting B and N be a basic-nonbasic partitioning of the columns of A, we

can partition AB and AN into

AB =

[

A11 0
A21 βIm−k

]

, AN =

[

A12 βIk

A22 0

]

, (7)
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where the rightmost m − k and k columns are logical. (The rows of A and the indices

in B and N can always be permuted to obtain that form.) The partitioning uniquely

determines A11. Therefore any basis for A determines a square nonsingular A11.

To obtain A11 with the desired properties, it will turn out that AB must have local

ρ-maximum volume in A. An algorithm for finding a basis matrix of local maximum

volume is given in [7]. Algorithm 1 is a generic version that leaves some flexibility to

the implementation by not specifying how to choose (p, q) in line 4 in case there is more

than one candidate. In particular, it is not necessary to scan the entire matrix A
−1
B AN

in every iteration or even to compute it explicitly.

Lemma 3.1. Algorithm 1 terminates in a finite number of iterations. The resulting A11

has local (2ρ2)-maximum volume in A and

‖A/A11‖max ≤ ρβ,
∥

∥A−1
11

∥

∥

max
≤ ρβ−1. (8)

Algorithm 1

Input: A ∈ R
m×n, ρ ≥ 1, β > 0.

Output: Square submatrix A11 of local (2ρ2)-maximum volume in A.
1: Build A = [A βIm ].
2: Initialize B = {n + 1, . . . , n + m}, N = {1, . . . , n}.

3: while
∥

∥

∥
A

−1

B AN

∥

∥

∥

max
> ρ do

4: Choose (p, q) such that |A−1

B AN |pq > ρ.
5: Exchange indices Bp and Nq between B and N .
6: end while
7: Build A11 from (7).

Proof. Each basis update in Algorithm 1 increases the volume of AB by a factor greater

than 1. Therefore a basis cannot repeat and the algorithm terminates in a finite number

of iterations. When the algorithm terminates, all entries of

A
−1
B AN =

[

A−1
11 A12 βA−1

11

β−1A/A11 −A21A−1
11

]

(9)

are bounded by ρ in absolute value. This means that A11 has local ρ-maximum volume

in its block row and block column, and ‖A/A11‖max ≤ ρβ and
∥

∥A−1
11

∥

∥

max
≤ ρβ−1. When

A11 has dimension min(m, n), then A11 has local ρ-maximum volume in A. Otherwise

consider any submatrix of A of the form (4). The right-hand side in (5) is bounded by

|γ(A−1
11 )ji + (A−1

11 b)j(A−T
11 c)i| ≤ ρβρβ−1 + ρρ = 2ρ2.

Therefore A11 has local (2ρ2)-maximum volume in A. ✷

The following lemma proves that for a certain choice of β the dimension of A11 reveals

the numerical rank of A.
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Lemma 3.2. Let ε > 0 and ρ ≥ 1 be given parameters. Let A11 be the r × r submatrix

determined by Algorithm 1 for β = min(m, n)ερ. Then r is the numerical rank of A

under tolerance ε.

Proof. We need to show that σr(A) ≥ ε and σr+1(A) = O(ε). For the first part, the

interlacing property of the singular values [6, Corollary 8.6.3] implies that σr(A11) ≤
σr(A) for any r × r submatrix A11 of A. Therefore

1

σr(A)
≤ 1

σmin(A11)
=

∥

∥A−1
11

∥

∥

2
≤ r

∥

∥A−1
11

∥

∥

max
≤ rρβ−1 ≤ 1

ε
,

so that σr(A) ≥ ε.

The second part is trivial if r = min(m, n). Otherwise we use from [12, Theorem 2.7]

that for any nonsingular r × r submatrix A11 of A, σr+1(A) ≤ ‖A/A11‖2. Therefore

σr+1(A) ≤ ‖A/A11‖2 ≤ ‖A/A11‖max

√

(m − r)(n − r) ≤ βρ
√

(m − r)(n − r)

= ερ2 min(m, n)
√

(m − r)(n − r).

It follows that σr+1(A) is bounded in terms of ε for fixed dimension of A. ✷

In contrast to the singular value decomposition, Algorithm 1 cannot determine r such

that σr(A) ≥ ε > σr+1(A). It can only guarantee the first inequality and a bound on

σr+1(A) in terms of ε and the dimension of A. In our definition this is sufficient for a

rank revealing factorization. Notice from (8) how β balances between keeping the inverse

of A11 bounded and getting the Schur complement small. The first condition achieves

that r ≥ rank(A) and the second condition that r ≤ rank(A) in the numerical sense.

Including ρ in the definition of β in Lemma 3.2 guarantees that σr(A) ≥ ε at the cost

that the bound on σr+1(A) grows with ρ2.

The following lemma and corollary provide a bound on the iteration count of Algo-

rithm 1 in the case that ρ > 1 and that entries of maximum absolute value in A
−1
B AN

are chosen as pivots.

Lemma 3.3. Suppose that (p, q) in line 4 of Algorithm 1 is chosen such that |A−1
B AN |pq =

∥

∥A
−1
B AN

∥

∥

max
. Then after l ≥ 1 exchanges

vol(A11) ≥ ρ(l−k) σ1(A) · · · σk(A)
√

mn · · ·
√

(m − k + 1)(n − k + 1)
, (10)

where A11 is the submatrix defined by (7) for the current basis and k denotes its dimen-

sion.

Proof. The proof is by induction over l. After one exchange A11 is a 1 × 1 matrix

consisting of an entry of A of maximum absolute value. Hence
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vol(A11) = ‖A‖max ≥ ‖A‖2√
mn

= ρ0 ‖A‖2√
mn

= ρ(l−k) σ1(A)√
mn

,

so that (10) holds for l = 1.

Now assume that (10) holds after 1, . . . , l exchanges and consider exchange l + 1.

Denote (B, N , A11) the basis and submatrix before the exchange, and (B′, N ′, A′
11) the

same quantities after swapping Bp and Nq. Let k and k′ be the dimensions of A11 and

A′
11, respectively. We have to distinguish three cases:

(i) Either Bp and Nq are both structural or both logical. Then the dimension of A11

remains unchanged, so that

vol(A′
11) =

vol(AB′)

β(m−k)
>

ρ vol(AB)

β(m−k)
= ρ vol(A11).

Combining this with the induction assumption for l shows that (10) holds for l + 1.

(ii) Bp is logical and Nq is structural. Then k′ = k + 1 and A11 is a submatrix of A′
11.

From the determinant property of the Schur complement [2] we have

vol(A′
11) = vol(A11) vol(A′

11/A11).

Because (p, q) was chosen as a maximum absolute entry of (9) and because A′
11/A11

is an entry of A/A11, we must have |A′
11/A11| = ‖A/A11‖max. Consequently

|A′
11/A11| = ‖A/A11‖max ≥ ‖A/A11‖2

√

(m − k)(n − k)
≥ σk+1(A)

√

(m − k)(n − k)
,

where the last inequality is proved in [12, Theorem 2.7]. Combining the two previous

expressions and using the induction assumption gives

vol(A′
11) = vol(A11)|A′

11/A11|

≥ vol(A11)
σk+1(A)

√

(m − k)(n − k)

≥ ρ(l−k) σ1(A) · · · σk(A)
√

mn · · ·
√

(m − k + 1)(n − k + 1)

σk+1(A)
√

(m − k)(n − k)

= ρ(l+1−k′) σ1(A) · · · σk+1(A)
√

mn · · ·
√

(m − k)(n − k)
.

(iii) Bp is structural and Nq is logical. Then k′ = k − 1. Let l′′ < l be maximum such

that the submatrix A′′
11 after l′′ exchanges had dimension k − 1, and denote B′′ the

basis after l′′ exchanges. Because each of the exchanges l′′ + 1, . . . , l + 1 increased

the volume of the basis matrix by at least a factor ρ, we have
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vol(A′
11) =

vol(AB′)

β(m−k′)
≥ ρ(l+1−l′′) vol(AB′′)

β(m−k′)
= ρ(l+1−l′′) vol(A′′

11).

Combining this with the induction assumption for l′′ gives

vol(A′
11) ≥ ρ(l+1−l′′) vol(A′′

11)

≥ ρ(l+1−l′′)ρ(l′′−k′) σ1(A) · · · σk′(A)
√

mn · · ·
√

(m − k′ + 1)(n − k′ + 1)

= ρ(l+1−k′) σ1(A) · · · σk′(A)
√

mn · · ·
√

(m − k′ + 1)(n − k′ + 1)
.

In each of the cases (i)–(iii) (10) holds after l + 1 exchanges, which completes the

proof. ✷

Corollary 3.4. Suppose that ρ > 1 and that (p, q) in line 4 of Algorithm 1 is chosen as

in Lemma 3.3. Then Algorithm 1 terminates after at most r + ⌊r logρ

√
mn⌋ iterations,

where r ≤ min(m, n) is the dimension of the final submatrix A11.

Proof. Let l be the iteration count of Algorithm 1. By the interlacing property of the

singular values [6, Corollary 8.6.3] we have vol(A11) ≤ σ1(A) · · · σr(A). It follows from

Lemma 3.3 that

ρ(l−r) ≤ √
mn · · ·

√

(m − r + 1)(n − r + 1),

which implies that

l − r ≤ logρ

(√
mn · · ·

√

(m − r + 1)(n − r + 1)
)

≤ logρ

(√
mn

r)

= r logρ(
√

mn).

Because the left-hand side is integer, we can round the right-hand side of the inequality

toward zero, which yields the claim. ✷

A similar bound was proved in [10] for a particular variant of a maximum volume

algorithm. Whether the iteration count remains bounded polynomially in mn for ρ = 1

is an open question. The numerical experiments in Section 6 will show that in practice

the actual iteration count is much lower than the bound predicts.

4. Bounds on σmin(A11) and ‖A/A11‖
2

The discussion so far has shown that A11 that satisfies (8) reveals the numerical rank

of A. It remains to be shown that the minimum singular value of A11 is close to σr(A) for

A11 obtained from Algorithm 1. This section derives bounds on σmin(A11) and ‖A/A11‖2

in terms of the singular values of A that hold for any local maximum volume submatrix.

More specifically, the following theorem is proved.
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Theorem 4.1. Let A11 be k × k nonsingular and have local (2ρ2)-maximum volume in A.

Then

σk(A) ≥ σmin(A11) ≥ 1

2ρ2k
√

(m − k + 1)(n − k + 1)
σk(A), (11)

σk+1(A) ≤ ‖A/A11‖2 ≤ 2ρ2(k + 1)
√

(m − k)(n − k)σk+1(A). (12)

The first inequalities in (11) and (12) hold true for any k × k submatrix of A, whereas

the second inequalities require the maximum volume property. (12) is proved in [8] under

the assumption that A11 has global ρ-maximum volume in A. Interestingly, the proof

given there goes through unchanged if A11 has local ρ-maximum volume as defined in

this paper. The proof is given here for completeness. The proof for (11) is new to the

authors.

Lemma 4.2. Let A ∈ R
m×n and A11 be a nonsingular k × k submatrix (k < min(m, n))

of local ρ-maximum volume. Then

‖A/A11‖max ≤ ρ(k + 1)σk+1(A).

Proof (from [8, Theorem 2.1]). Consider any (k+1)×(k+1) submatrix of A of the form

Â =

[

A11 b
cT α

]

.

Then γ = α − cT A−1
11 b is an entry of A/A11 and each entry of A/A11 has this form for

a particular Â. Therefore it suffices to show that |γ| ≤ ρ(k + 1)σk+1(A).

If Â is singular, then γ = 0 and the claim is trivial. Otherwise, because A11 has

ρ-maximum volume in Â, by Lemma 2.4 and (6),

ρ|γ−1| ≥
∥

∥

∥
Â−1

∥

∥

∥

max
.

It follows that

|γ| ≤ ρ
1

∥

∥

∥
Â−1

∥

∥

∥

max

≤ ρ
k + 1

∥

∥

∥
Â−1

∥

∥

∥

2

= ρ(k + 1)σk+1(Â) ≤ ρ(k + 1)σk+1(A),

where the last inequality comes from the interlacing property of singular values [6, Corol-

lary 8.6.3]. ✷

Corollary 4.3. Let A ∈ R
m×n and A11 be a nonsingular k ×k submatrix (k < min(m, n))

of local ρ-maximum volume. Then

σk+1(A) ≤ ‖A/A11‖2 ≤ ρ(k + 1)
√

(m − k)(n − k)σk+1(A).
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Proof. The first inequality is proved in [12, Theorem 2.7]. The second inequality follows

from Lemma 4.2. ✷

Lemma 4.4. Let A ∈ R
m×n and A11 be a nonsingular k×k submatrix of local ρ-maximum

volume. Then

σk(A) ≤ ρk
√

(m − k + 1)(n − k + 1)σk(A11).

Proof. If k = 1, then A11 is scalar and because of local ρ-maximum volume it satisfies

ρ|A11| ≥ ‖A‖max. Therefore

σ1(A) ≤ √
mn ‖A‖max ≤ √

mnρ|A11| = ρ
√

mnσ1(A11).

If k > 1, let B be a (k − 1) × (k − 1) submatrix of A11 with maximum volume in A11.

In particular B is nonsingular. Consider any k × k submatrix of A of the form

A′′
11 =

[

B b
cT α

]

.

Because A′′
11 differs from A11 by at most one row and one column, and because A11 has

local ρ-maximum volume in A,

ρ vol(A11) ≥ vol(A′′
11).

From the determinant property of the Schur complement [2], det(A11) = det(B) det(A11/

B), it follows for the scalars A11/B and A′′
11/B that

ρ|A11/B| = ρ
vol(A11)

vol(B)
≥ vol(A′′

11)

vol(B)
= |A′′

11/B|.

Because A′′
11/B is an entry of A/B and each entry of A/B has this form for a particular

A′′
11, it follows that

ρ|A11/B| ≥ ‖A/B‖max .

Therefore

σk(A) ≤ ‖A/B‖2 ≤
√

(m − k + 1)(n − k + 1) ‖A/B‖max

≤ ρ
√

(m − k + 1)(n − k + 1)|A11/B|
≤ ρ

√

(m − k + 1)(n − k + 1)kσk(A11),

where the first inequality is from [12, Theorem 2.7] and the last inequality from

Lemma 4.2 and the fact that B was chosen to have maximum volume in A11. ✷
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Corollary 4.5. Let A ∈ R
m×n and A11 be a nonsingular k × k submatrix of local

ρ-maximum volume. Then

σk(A) ≥ σmin(A11) ≥ 1

ρk
√

(m − k + 1)(n − k + 1)
σk(A).

Proof. The first inequality comes from the interlacing property of singular values [6,

Corollary 8.6.3]. The second inequality follows from Lemma 4.4. ✷

Theorem 4.1 follows from Corollaries 4.5 and 4.3.

5. Comparison to Pan’s method

Pan [12] uses the maximum volume concept in combination with LU factorization to

find a submatrix A11 that has very similar properties to the submatrix obtained from

Algorithm 1. This section compares the two methods regarding their use of the maximum

volume property and possible implementations.

Given A ∈ R
m×n, k ≤ rank(A) and ρ ≥ 1, Pan’s method proceeds in two steps:

(1) It applies Algorithm 2 with ρ̄ = ρ2 to AT A to obtain a principal k × k submatrix of

local ρ2-maximum volume; i.e. a submatrix of the form AT
J AJ whose volume cannot

be increased by more than a factor ρ2 by replacing one index in J . The column slice

AJ then has ρ-maximum volume in A.

(2) It uses Algorithm 3 to find a k × k submatrix of local ρ-maximum volume in AJ .

Algorithms 2 and 3 are generic versions of Algorithms 1 and 2 in [12] which leave some

flexibility to the choice of the pivot element. Lemmas 2.5 and 2.3 prove that the submatrix

determined by each algorithm has indeed the desired maximum volume property.

Algorithm 2

Input: C ∈ R
n×n symmetric positive semidefinite, k ≤ rank(C), ρ̄ ≥ 1.

Output: Principal k × k submatrix C11 of local ρ̄-maximum volume.
1: Compute the partial Cholesky factorization

P CP
T

=

[

C11 CT
21

C21 C22

]

=
[

L11

L21 In−k

]

[

LT
11 LT

21

S

]

, (13)

where P is a chosen permutation matrix and L11 is a k×k lower triangular matrix with nonzero diagonal
entries.

2: while there exist 1 ≤ p ≤ k and 1 ≤ q ≤ n − k with |Sqq

(

C−1
11

)

pp
+

(

C21C−1
11

)

2

qp
| > ρ̄ do

3: Choose such (p, q) and interchange rows p and k + q of P .
4: Restore the factorization (13) for the updated P .
5: end while

Let us say that the submatrix A11 obtained from the above procedure has “normal”

ρ-maximum volume in A to distinguish it from a local maximum volume in our definition.
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Algorithm 3

Input: A ∈ R
m×k of rank k, ρ ≥ 1.

Output: k × k submatrix A1 of local ρ-maximum volume.
1: Compute the LU factorization

P AQ =
[

A1

A2

]

Q =
[

L1

L2

]

U, (14)

where P and Q are chosen permutation matrices, L1 is a k × k lower triangular matrix with nonzero
diagonal entries and U is unit upper triangular.

2: while there exist 1 ≤ p ≤ k and 1 ≤ q ≤ m − k with |
(

A2A−1
1

)

qp
| > ρ do

3: Choose such (p, q) and interchange rows p and k + q of P .
4: Restore the factorization (13) for the updated P and a newly chosen Q.
5: end while

Theorem 3.8 in [12] proves the following bounds on the singular values of A11 and A/A11

for m = n:

σk(A) ≥ σmin(A11) ≥ 1

k(n − k)ρ2 + 1
σk(A),

σk+1(A) ≤ ‖A/A11‖2 ≤
(

k(n − k)ρ2 + 1
)

σk+1(A).

These bounds are almost identical to those in Theorem 4.1. Although the setting in

[12] assumes the dimension of A11 to be given, choosing it dynamically by means of a

tolerance β as in Algorithm 1 can be easily incorporated into Algorithm 2. Therefore

Pan’s method and our method provide the same functionality.

Pan’s complexity analysis provides operation counts for updating the matrix factor-

izations in Algorithms 2 and 3, but does not consider the number of exchanges required.

An upper bound can be derived along the lines of Lemma 3.3 and Corollary 3.4, however.

Lemma 5.1.

(i) Let ρ̄ > 1 in Algorithm 2 and let the partial Cholesky factorization in line 1 be

computed with complete pivoting; i.e. in each elimination step the pivot element is

chosen to be a diagonal entry of maximum absolute value from the active submatrix.

Then the subsequent while-loop terminates after at most ⌊k logρ̄ n⌋ iterations.

(ii) Let ρ > 1 in Algorithm 3 and let the LU factorization in line 1 be computed with

complete pivoting; i.e. in each elimination step the pivot element is chosen to be of

maximum absolute value from the active submatrix. Then the subsequent while-loop

terminates after at most ⌊k logρ m⌋ iterations.

Proof. For part (i) consider the Cholesky factorization in line 1 of Algorithm 2. Denote

C(s) the active submatrix prior to the s-th elimination step (1 ≤ s ≤ k) and let γs be the

chosen pivot element from the diagonal of C(s). Because C(s) is positive semidefinite, its

maximum absolute entry is found on the diagonal and is nonnegative (see [6, Section 4.1]).
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Hence, by the pivot choice, we have γs =
∥

∥C(s)
∥

∥

max
. It follows from [12, Theorem 2.7]

that

σs(C) ≤
∥

∥

∥
C(s)

∥

∥

∥

2
≤ γs(n − s + 1),

and by taking the product over s we obtain

∏k
s=1 σs(C)
∏k

s=1 γs

≤ nk.

From the interlacing property of the singular values [6, Corollary 8.6.3] we know that the

volume of any k×k submatrix of C is bounded by
∏k

s=1 σs(C). Because each interchange

in the while-loop increases the volume of C11 by at least a factor ρ̄, and because the

volume of the initial C11 is
∏k

s=1 γs, the number of interchanges is bounded by

⌊

logρ̄

(

nk
)⌋

=
⌊

k logρ̄ n
⌋

.

The proof of part (ii) is analogous. ✷

These bounds are similar to those for our algorithm (Corollary 3.4), which chooses the

row and column subsets simultaneously. It is not of much practical relevance to compare

the algorithms in terms of the derived complexity bounds, however, since (at least in our

case) the bounds are far too conservative as the experiments in Section 6 will show.

The important difference between Pan’s and our method concerns implementation.

For dense matrices both algorithms can be implemented efficiently, but there seems to

be no advantage over using rank revealing QR factorization [9] for choosing the column

subset, followed by Algorithm 3 for choosing the row subset. For sparse matrices, Al-

gorithm 1 can be implemented by maintaining an LU factorization of AB after column

changes. This is a common operation in linear programming for which established sparse

matrix methods exist (see, for example, [4]). Implementing Algorithm 2 requires main-

taining a Cholesky (or LU) factorization of AT
J AJ after symmetric row and column

changes. While this is possible in the sparse case [3], these operations can be much more

expensive in terms of memory requirement and computation time than maintaining an

LU factorization of AB. To illustrate, assume that our method and Pan’s method yield

the same submatrix A11. Then the final iteration of Algorithm 2 requires a Cholesky

factorization of AT
11A11 + AT

21A21, whereas the final iteration of Algorithm 1 requires an

LU factorization of

[

A11 0
A21 I

]

. In the latter case we only need to factorize A11, which

typically leads to much sparser factors than operating on the normal matrix.

Initially, the authors suspected that local and normal maximum volume might be the

same property, but this conjecture turned out to be false. Two examples are given to

prove that neither property implies the other. First, consider
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A =

















1 1
1 1

1 1
1 1 1
1

1
1

















and let A11 be the leading 3 × 3 block. It can be computed analytically that the singular

values of the submatrix formed by any three columns of A are
(√

5,
√

2,
√

2
)

, so that

the first three columns have local maximum volume in A. From Lemma 2.3 it is obvious

that A11 has local maximum volume within the first three columns. Hence it has normal

maximum volume in A. However, it can be verified from Lemma 2.5 that A11 does not

have maximum volume in the leading 4 × 4 block and therefore does not have local

maximum volume in A.

For the opposite part consider

A =







1 0 0
0 1 0
1 −1 −1

−1 1 −1






(15)

and let A11 be the leading 2 × 2 block. It can be verified from Lemma 2.5 that A11 has

local maximum volume in A. By computing singular values we obtain the volume of the

matrix composed of columns 1 and 2 to be
√

5 and the volume of the matrix composed

of columns 1 and 3 to be
√

6. Hence the first two columns do not have local maximum

volume in A, and neither does A11 have normal maximum volume in A.

6. Implementation and results

We have implemented a simplicial version of Algorithm 1 for dense matrices in C code.1

By “simplicial” we mean that the implementation does not work on block submatrices

and makes no use of optimized BLAS. It therefore is slower than an optimized singular

value decomposition. Our interest is to examine the number of pivot operations required

and to verify the reliability of the method. Discussing an optimized implementation is

beyond the scope of the paper.

Initially the matrix W = [A Im ] is stored. Logical columns are not explicitly scaled

by β to avoid values with very different orders of magnitude in the computation. Instead,

multiplications with β and β−1 are applied on the fly when logical columns are involved.

In each iteration the algorithm chooses a pivot element in the following order:

(i) If |W | has entries corresponding to block A−1
11 in (9) that are larger than ρβ−1, then

the maximum such entry is chosen as pivot.

1 http://www.maths.ed.ac.uk/ERGO/LURank.
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(ii) If |W | has entries corresponding to block A−1
11 A12 or −A21A−1

11 in (9) that are larger

than ρ, then the maximum such entry is chosen as pivot.

(iii) If |W | has entries corresponding to block A/A11 in (9) that are larger than ρβ, then

the maximum such entry is chosen as pivot.

If a pivot is found, then its column is transformed into a unit column by applying row

operations to W . If none of the cases (i)–(iii) yields a pivot element, the algorithm

terminates.

The implementation, in the following called RRGE for “rank revealing Gaussian elim-

ination”, has been tested on matrices from the San Jose State University Singular Matrix

Database [5]. We used the 327 matrices (as of January 2018) for which min(m, n) ≤ 1000.

The matrices were transposed if necessary so that m ≤ n. For comparison a singular value

decomposition (SVD) of each matrix A was computed and the numerical rank of A was

determined as the largest index s such that

σs(A) ≥ max(m, n)εmachσ1(A),

where εmach ≈ 2 · 10−16 is the relative machine precision. This is the criterion used by

the MATLAB cond function. All matrices in the test set were rank deficient by this

definition. For RRGE β was chosen comparably as

β = max(m, n)εmach ‖A‖max

and ρ was initially set to 2.0. Denote r the dimension of the final submatrix A11, which

is the estimated rank of A.

For 56 matrices the numerical ranks determined by SVD and RRGE differed. This

is legitimate if there is no unique large gap in the spectrum of A. To verify that the

rank determined by RRGE is acceptable with respect to the singular values of A, Fig. 1

shows the ratios σr(A)/σs(A) and σr+1(A)/σs+1(A) for those matrices where r 6= s.

Because σr(A)/σs(A) ≤ 3.0, RRGE certainly does not underestimate the rank of A.

Furthermore, because σr(A)/σs(A) ≈ σr+1(A)/σs+1(A), there cannot be a clear gap of

the form σs(A) ≫ σs+1(A) ≈ σm(A) if r > s. For example, if r = s + 1, then σs(A),

σs+1(A) and σs+2(A) must be equally apart, so that determining the rank of A as s+1 is

legitimate. Hence it can be concluded that with the above choice of β, the rank computed

by RRGE is in accordance with the spectrum of A for all matrices in our test set.

Table 1 categorizes the 327 matrices into buckets by means of the number of pivot

operations of RRGE. Because our implementation started from the all logical basis, a

minimum of r pivots was required. For ρ = 2.0 the number of pivots was almost always

within 5% of the optimum. In this case the computational cost of RRGE was roughly

twice the cost of an LU factorization of A with complete pivoting. For ρ = 1.1 the number

of pivots increased significantly on many matrices. However, we have not found a relevant

increase in the ratios σr(A11)/σr(A), meaning that the quality of the submatrix A11 did
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Fig. 1. Ratios σr(A)/σs(A) (“+”) and σr+1(A)/σs+1(A) (“o”) for matrices with r 6= s. The “o” marker is
missing when r = m (7 matrices).

Table 1
Matrices categorized by the number
of pivot operations of RRGE.

pivots/r ρ = 2.0 ρ = 1.1

[1.00, 1.05) 325 159
[1.05, 1.50) 2 124
[1.5, 4.0) 0 37
[4.0, 5.0) 0 7

not improve. Hence there seems to be no advantage of choosing ρ particularly close to

1.0 in practice.

Despite its simplicity, the implementation proved to be numerically stable in our

experiments. One reason for this is the order in which pivot elements were chosen. Note

that the dimension of A11 increases only in case (iii) above, which occurs only when none

of the other three blocks in (9) contains a pivot element. Therefore A11 remains as well

conditioned as possible throughout, keeping the entries in |W | bounded by O(β−1). A

more efficient implementation of Algorithm 1 needs to avoid searching the entire matrix

W after each exchange, so that the above pivot rule is not applicable. In particular for

sparse matrices we can only compute one column or one row of A
−1
B AN at a time and

need to choose a pivot within that column or row. Whether the computations can still

be made numerically stable remains to be investigated.

7. Conclusions

We have presented an algorithm for revealing the numerical rank of A by Gaussian

elimination on the matrix [A βIm ]. The bounds on the revealed singular values are

very similar to those given in [12], but our algorithm does not make use of the normal
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matrix. A prototype implementation has shown that the number of pivot operations

required in practice is only slightly larger than the rank of A. Because the algorithm

allows some flexibility in choosing pivot elements, it can be implemented with blocked

memory access to achieve high floating point performance on dense matrices. Developing

a rank revealing factorization for sparse matrices based on the results from this paper is

a topic for further research.
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