

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429709658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Basis Preconditioning in Interior Point Methods

Lukas Schork

Doctor of Philosophy
The University of Edinburgh

2018

Abstract

Solving normal equations AATx = b, where A is an m × n matrix, is a common task in
numerical optimization. For the efficient use of iterative methods, this thesis studies the class
of preconditioners of the form BBT , where B is a nonsingular “basis” matrix composed of m
columns of A.

It is known that for any matrix A of full row rank B can be chosen so that the entries in
|B−1A| are bounded by 1. Such a basis is said to have “maximum volume” and its preconditioner
bounds the spectrum of the transformed normal matrix in the interval [1, 1+mn]. The theory is
extended to (numerically) rank deficient matrices, yielding a rank revealing variant of Gaussian
elimination and a method for computing the minimum norm solution for x from a reduced
normal system and a low-rank update. Algorithms for finding a maximum volume basis are
discussed.

In the linear programming interior point method a sequence of normal equations needs to
be solved, in which A changes by a column scaling from one system to the next. A heuristical
algorithm is proposed for maintaining a basis of approximate maximum volume by update
operations as those in the revised simplex method. Empirical results demonstrate that the
approximation means no loss in the effectiveness of the preconditioner, but makes basis selection
much more efficient.

The implementation of an interior point solver based on the new linear algebra is described.
Features of the code include the elimination of free variables during preconditioning and the
removal of degenerate variables from the optimization process once sufficiently close to a bound.
A crossover method recovers a vertex solution to the linear program, starting from the basis at
the end of the interior point solve. A computational study shows that the implementation is
robust and of general applicability, and that its average performance is comparable to that of
state-of-the-art solvers.

2

Declaration

The present thesis was written by myself and the work contained therein is my own except
where stated otherwise in the text. The work has not been submitted for any other degree or
professional qualification except as specified.

Didcot, 15 February 2019 Lukas Schork

3

Contents

1 Introduction 7

2 Maximum Volume Basis 9
2.1 Definition and Properties . 9
2.2 Finding a Submatrix of Local Maximum Volume 11
2.3 Empirical Tests . 12
2.4 A Rank Revealing Method . 15
2.5 Implementation for Dense Matrices . 19
2.6 Comparison to Pan’s Method . 20

3 Basis Preconditioning for Least Squares 22
3.1 Spectrum of the Preconditioned Matrix . 22
3.2 Numerical Investigation . 24
3.3 Additional Columns . 26
3.4 Error Control for Iterative Methods . 27
3.5 Rank Deficient Matrices . 28

4 Analysis of an Inexact Interior Point Method 31
4.1 Background . 31
4.2 Two Inexact Potential Reduction Methods . 32
4.3 Proof of the Complexity Bound for the Feasible Method 35
4.4 Proof of the Complexity Bound for the Infeasible Method 36
4.5 Discussion . 39

5 Basis Matrices in the Interior Point Method 41
5.1 Background . 41
5.2 Comparison of Maximum Volume and Maximum Weight Bases 43
5.3 Comparison of Maximum Volume and Optimal Bases 46
5.4 Crossover . 48
5.5 Fixing Primal and Dual Variables . 50

6 Implementation of the Interior Point Solver 53
6.1 Preprocessing . 54
6.2 Interior Point Algorithm . 54
6.3 Initial Iterations . 57
6.4 Basis Preconditioned CR Method . 59
6.5 Maintaining a Basis Matrix . 62
6.6 Crash Basis . 64
6.7 Fixing Variables . 68
6.8 Crossover . 70

7 Computing and Updating Sparse LU Factors 73
7.1 Factorizing LP Basis Matrices . 73
7.2 The Forrest-Tomlin Update . 74
7.3 Permutation to Triangular Form . 75
7.4 Implementing the Update . 81
7.5 Benchmark on Simplex Bases . 84

4

8 Computational Results 88
8.1 Test Environment . 88
8.2 A Diverse Problem Set . 88
8.3 Specific Problem Classes . 90

9 Conclusions 92

A Test Set and Solution Times 93

References 99

5

Notations

Rn Space of n-dimensional real vectors.
Rn>0 Space of n-dimensional real vectors with positive entries.

Rm×n Space of real m× n matrices.
B, J , N , . . . Ordered index sets; Jk is the k-th index and |J | the number of indices

in the set.
Aj Column j of matrix A.
AB If A is not diagonal matrix, AB is composed of columns Aj for j ∈ B.
DB If D is diagonal matrix, DB is the principal submatrix indexed by B.
xB Subvector of x indexed by B.

I, Im Identity matrix (of dimension m).
diag(xi) Diagonal matrix with entries xi on the diagonal.

ej Column j of I.
e Vector of all 1s.
0 Vector of all 0s.

|x|, |A| Componentwise absolute value of vector x and matrix A.
‖x‖, ‖A‖ 2-norm of vector x and induced operator norm of matrix A.
‖x‖∞ Infinity norm of x.
‖A‖max Maximum entry of A in absolute value.
‖A‖F Frobenius norm of A.
‖A‖∗ Nuclear norm of A (sum of the singular values).
σr(A) r-th largest singular value of A.

σmin(A), σmax(A) Minimum and maximum singular value of A.
cond(A) 2-norm condition number of A (σmax(A)/σmin(A)).

detB Determinant of square matrix B.
vol(A) Volume of A defined as the product of its singular values.

null(A) Null space of A.
nnz(A) Number of nonzero entries in A.
O(·) If 0 ≤ f(x) ≤ cg(x) for all x ≥ x0, where c and x0 are positive

constants, then f(x) = O(g(x)).
Ω(·) If 0 ≤ cg(x) ≤ f(x) for all x ≥ x0, where c and x0 are positive

constants, then f(x) = Ω(g(x)).
Θ(·) If f(x) = O(g(x)) and f(x) = Ω(g(x)), then f(x) = Θ(g(x)).

6

1 Introduction

Linear programming (LP) is the minimization of a linear function subject to linear equality and
inequality constraints on the variables. LP problems arise from modelling real-world processes
in a variety of areas (see Vanderbei [79] for an overview) and as subproblems in algorithms for
nonlinear and mixed-integer optimization. For solving large-scale problems by today’s stan-
dards, which can have in the tens of millions of variables and constraints, the interior point
method (IPM) is often the fastest or the only feasible option. This thesis develops the theory,
computational techniques and implementation of an interior point solver that is based on a
novel linear algebra kernel.

Solving sparse linear systems is the most time consuming part of the IPM. Current state-
of-the-art implementations are based on Cholesky factorization (see Andersen et al. [6]), which
is robust and has proved to be efficient on a wide range of problems. The issue with direct
factorization, however, is the computational work and memory requirement when the sparsity
pattern of the constraint matrix leads to large fill-in. Iterative methods seem to be an alternative
in this case, but they have rarely found their way into production software. The challenge
for iterative linear algebra is the high ill-conditioning that occurs in advanced interior point
iterations and that requires effective preconditioning to obtain an acceptable convergence rate
of the linear solver.

The linear systems from the IPM can be expressed as normal equations AATx = b with an
m×n matrix A of full row rank. A basis preconditioner for AAT is BBT , where the basis matrix
B is nonsingular and composed of m columns of A. Employing basis preconditioning in the IPM
is motivated by two observations: Firstly, basis matrices from LP models are typically “easy” to
factorize because a large part of them can be permuted to triangular form. Hence computing and
applying an inverse representation of the preconditioner is much less expensive than factorizing
AAT directly. Secondly, for a nondegenerate LP model n−m columns of A tend to zero when
the IPM approaches the solution, while the remaining m columns form a nonsingular matrix.
With the obvious choice for B the basis preconditioner is then asymptotically perfect.

Basis preconditioning in the linear programming IPM was the subject of at least two previous
PhD theses by Oliveira (1997) [61] and Al-Jeiroudi (2009) [2]. In both works B was chosen
as the first m linearly independent columns of A after ordering the columns by decreasing
magnitude. (The 1-norm was used in [61] and the IPM scaling factors were used in [2].)
Their conclusion that the iterative approach performed better than direct factorization on
some problem classes should be considered with care, however, firstly because the performance
comparisons were based on simplicial1 Cholesky codes, and secondly because an ad-hoc ordering
method was applied to the normal matrix without taking special structures of A (such as dense
columns) into account. It is clear from the reported results that the iterative approach would
not be competitive to a state-of-the-art direct method. It is also unsatisfactory that the IPM
implementations converged only on a small set of problems.

The issue with the previous approach for choosing B is that it guarantees effectiveness of
the preconditioner only in the limit of the interior point solve and only if the LP problem is
(nearly) nondegenerate. In practice LP models are often highly degenerate and asymptotic
properties may not be observed until very late in the interior point solve. In either case the
theoretical guarantees of the preconditioner are very conservative, see Monteiro et al. [58].

This thesis develops an IPM with basis preconditioning using a novel method for choosing
B. It is known that for any matrix A of full row rank a basis matrix exists such that the
entries in |B−1A| are bounded by 1. Such a basis is said to have “maximum volume” because
|detB| will then be maximum among all neighbouring bases (i. e. among all bases obtained by

1The term “simplicial” is used for factorization methods that do not exploit cache memory through operations
on dense submatrices.

7

replacing one column of B). The maximum volume criterion has been used in other areas of
numerical linear algebra for decades [42, 8, 31, 64, 29, 28]. For basis preconditioning it was first
investigated recently by Arioli and Duff [7], who observed that a maximum volume basis bounds
the spectrum of the preconditioned normal matrix in the interval [1, 1+mn]; i. e. independently
of the numerical properties of A. For application in the IPM a heuristical algorithm for basis
selection is proposed because finding a maximum volume basis would be unacceptably expensive
for large-scale problems. It will be seen that a basis of comparable quality can be maintained
efficiently between interior point iterations using basis updates as those in the revised simplex
method.

The thesis further explores the availability of a basis matrix in IPM implementation. The
well-known issue of handling free variables is resolved by eliminating them in the preconditioning
phase and the basis is utilized to remove degenerate variables from the optimization process
once sufficiently close to a bound. Both techniques increase the numerical stability of the IPM.
A crossover method for recovering a vertex solution starting from the basis at the end of the
interior point solve is investigated. Crossover is often the dominating cost for solving large-
scale LP models. In our setting the crossover time could be reduced tremendously in some cases
by computing an interior solution of very high accuracy, which is enabled by the techniques
mentioned before.

An interior point solver based on these ideas has been implemented in a new software
package called IPX. The package is written in C++ and is of production quality. It can
interface third-party codes for the sparse LU factorization/update of basis matrices, allowing
to choose a factorization routine that suits the characteristics of the problem. Computational
results demonstrate that the solver is robust and of general applicability, and that it performs
better than the best direct solvers on several large-scale LP models.

Chapter 2 of the thesis is devoted to a general study of the maximum volume concept and
its application to rank revealing factorizations. Algorithms for finding a maximum volume basis
are discussed. Chapter 3 introduces basis preconditioning for least squares problems, which are
important in their own right and lead to the same linear systems as the IPM. In Chapter 4 the
convergence of an IPM with inexact step directions is analysed. Inexact directions result from
iterative linear algebra, and the analysis gives some insights about how accurately the systems
need to be solved. Chapter 5 continues with theoretical results about basis matrices in the IPM.
Chapters 6 and 7 are concerned with computational techniques. They present the design and
implementation of IPX and an LU factorization/update that has been developed specifically
for very sparse LP matrices. Chapter 8 discusses the results of a computational study of the
code. Final conclusions are drawn in Chapter 9.

8

2 Maximum Volume Basis

The maximum volume criterion for choosing a submatrix out of a larger matrix is a well-known
concept in rank revealing factorizations. It was first used in orthogonal methods [36, 31] and
later extended to Schur complement factorizations [64, 29] (i. e. Gaussian elimination and its
variants). In the present work it will provide the backbone for building a preconditioner for an
iterative linear solver. This chapter introduces the maximum volume criterion and develops a
new rank revealing method based on it, that is suitable for sparse matrices.

Here and in the sequel a basis B for a matrix A ∈ Rm×n of rank m is an ordered set of m
indices such that AB is nonsingular. Associated with B is the nonbasic set N with the obvious
definition. A−1

B AN is called the “tableau matrix”. Given a partitioning of an arbitrary matrix
A into

A =

[
A11 A12

A21 A22

]
(2.1)

in which A11 is square and nonsingular, let the matrix A× be defined as

A× =

[
A−1

11 A−1
11 A12

−A21A
−1
11 A/A11

]
,

where A/A11 = A22−A21A
−1
11 A12 denotes the Schur complement of A11 in A. For reasons that

will become clear below, we call A× the “generalized tableau matrix”.

2.1 Definition and Properties

The volume of a matrix was first defined by Ben-Israel [8] as the product of its nonzero singular
values. In the present work it is more appropriate for a rank deficient matrix to have volume
zero, so that the following definition is used.

Definition 2.1. For A ∈ Rm×n with singular values σ1 ≥ . . . ≥ σd ≥ 0 (d = min(m,n)), the
volume of A is vol(A) = σ1 · · ·σd.

The volume of a square matrix is the absolute value of its determinant. For an m×n matrix
with m < n we have vol(A) = (detAAT)1/2 and as shown by Ben-Israel [8]

vol(A) =

(∑
B basis

vol(AB)2

)1/2

.

It follows that vol(AB) ≤ vol(A) for any basis.

Definition 2.2. Let A ∈ Rm×n and ρ ≥ 1.

(i) Let B be a k×k submatrix of A. B has global ρ-maximum volume in A if vol(B) 6= 0 and

ρ vol(B) ≥ vol(B′) (2.2)

for all k × k submatrices B′ of A.

(ii) Let B be formed by k columns (rows) of A. B has local ρ-maximum volume in A if
vol(B) 6= 0 and (2.2) holds for any B′ that is obtained by replacing one column (row) of
B by one column (row) of A that is not in B.

(iii) Let k < min(m,n) and B be a k × k submatrix of A. B has local ρ-maximum volume in
A if it has global ρ-maximum volume in all (k+1)× (k+1) submatrices of A that contain
B.

9

The definition of local maximum volume of a row or column slice is from Pan [64]. The
extension to arbitrary submatrices was introduced by the author in [73]. Note that in the latter
case it is not sufficient for B to have local maximum volume in its row and column slice; the
volume must be maximum up to a factor ρ even if a row and column are exchanged.

Lemma 2.3. Let B ∈ Rm×m be nonsingular.

(i) Let B′ be obtained by replacing column i of B by the vector a. Then vol(B′) = |vi| vol(B),
where v = B−1a.

(ii) Let B′ be obtained by replacing columns i1 < · · · < is of B by the columns of A ∈ Rm×s.
Then vol(B′) = |detS| vol(B), where S is the submatrix of B−1A composed of rows
i1, . . . , is.

Proof. (i) follows immediately from Cramer’s rule, by which the column replacement changes
detB by the factor vi. (ii) follows analogously from the generalized Cramer’s rule [26].

A consequence of part (i) is that a basis matrix AB has local ρ-maximum volume in A if and
only if

∥∥A−1
B A

∥∥
max
≤ ρ. This characterization gives the local maximum volume its importance

for rank revealing factorizations and matrix approximation.
The formula for multiple column replacements allows to derive a bound on the global maxi-

mum volume in terms of a local one. Assume that B ∈ Rm×m has local ρ-maximum volume in
A ∈ Rm×n. Clearly, a B′ of global maximum volume can be obtained by exchanging at most
m columns of B. By Lemma 2.3 the volume change is the absolute value of the determinant of
the corresponding submatrix of B−1A. Because

∥∥B−1A
∥∥

max
≤ ρ, it follows from Hadamard’s

inequality [30, Section 14.18] that for any s× s submatrix S of B−1A

|detS| ≤
s∏
i=1

‖Si‖ ≤ (ρ
√
s)s.

(Si denotes the i-th column of S and ‖·‖ its 2-norm.) Therefore the global maximum volume
is at most a factor (ρ

√
m)m larger than a local ρ-maximum volume. This bound has already

been established by Goreinov et al. [28] by the same argument. They also showed by example
that the bound is sharp.

The above lemma can be generalized to row and column replacements.

Lemma 2.4. Let the matrix A be partitioned as in (2.1) and let A11 be k × k nonsingular.
Interchanging columns j1 and j2, where j1 lies in the first block and j2 in the second block, and
rows i1 and i2, where i1 lies in the first block and i2 in the second block, changes vol(A11) by the
factor |detS|, where S is the submatrix of A× composed of rows (j1, i2) and columns (i1, j2).

Proof. Consider the bordered matrix A =
[
A Im

]
. The columns of A and Im in A are termed

“structural” and “logical”, respectively. Let B and N be the index sets such that

AB =

[
A11 0
A21 Im−k

]
, AN =

[
Ik A12

0 A22

]
,

which are uniquely defined by the partitioning of A. Notice that B is a basis for A and that
vol(AB) = vol(A11). Exchanging a structural column of AB with a structural column of AN
corresponds to a column exchange between the two blocks in A. Likewise, exchanging a logical
column of AB with a logical column of AN corresponds to a row exchange between the two
blocks of A. Therefore the volume change we are interested in is the volume change of AB after

10

replacing columns j1 and i2 of that matrix by columns j2 and i1 of AN . By Lemma 2.3 the
volume change is the absolute value of the determinant of the 2× 2 submatrix of

A−1
B AN =

[
A−1

11 A−1
11 A12

−A21A
−1
11 A/A11

]
composed of rows (j1, i2) and columns (i1, j2). But this is the submatrix S of A× defined in
the lemma.

Lemma 2.4 was first proved by the author in [73] by a technical computation. The sim-
plicity of the proof given here comes from the formula for multiple column exchanges given in
Lemma 2.3, which was a consequence of the generalized Cramer’s rule. The proof also extends
to multiple row and column exchanges if i1, i2, j1 and j2 are replaced by index sets I1, I2, J1

and J2. Then vol(A11) changes by the absolute value of the determinant of the corresponding
submatrix of A× of dimension |I1| + |J1|. Because A× plays the same role in Lemma 2.4 as
B−1A in Lemma 2.3, the term “generalized tableau matrix” is justified.

Corollary 2.5. The submatrix A11 in (2.1) has local ρ-maximum volume in A if and only if it
has local ρ-maximum volume in its block row and block column and the determinant of all 2× 2
submatrices of A× with one entry in each block is bounded by ρ.

2.2 Finding a Submatrix of Local Maximum Volume

The applications in the following sections require us to determine a basis matrix of local maxi-
mum volume. That means, given a matrix A of full row rank and a parameter ρ ≥ 1, a method
is required for finding B such that

∥∥A−1
B A

∥∥
max
≤ ρ.

Algorithms for that task were described by Knuth [42], Pan [64] and Goreinov et al. [28].
The common scheme is to start with an arbitrary basis matrix AB, which can be found by
Gaussian elimination, and then to successively exchange columns of AB by columns of AN
under the condition that vol(AB) increases with each update. The scheme is formally stated
in Algorithm 1. Because each basis update increases vol(AB) by a factor |A−1

B A|pj > 1, the
algorithm terminates in a finite number of iterations.

Algorithm 1 Maxvolume

Input: A ∈ Rm×n of rank m, starting basis B, ρ ≥ 1.
1: while

∥∥A−1
B A

∥∥
max

> ρ do

2: Choose (p, j) such that |A−1
B A|pj > ρ.

3: Bp = j

If ρ > 1 and the initial basis is obtained by Gaussian elimination with complete pivoting
in A, an upper bound on the iteration count of Algorithm 1 can be derived. In each step
of Gaussian elimination, complete pivoting chooses an entry of maximum absolute value from
the active submatrix as pivot element. Let A[k] denote the active submatrix prior to the k-th
elimination and let ukk be the chosen pivot element. It follows from [64, Theorem 2.7] that

σk(A) ≤
∥∥∥A[k]

∥∥∥ ≤ |ukk|√mn.
If B is the basis determined by the pivotal columns, then

vol(A)

vol(AB)
=

∏m
k=1 σk(A)∏m
k=1 |ukk|

≤ (
√
mn)m.

11

Because each basis update in Algorithm 1 increases vol(AB) by at least a factor ρ and the
volume of any basis matrix is at most vol(A), the iteration count is bounded by⌈

logρ
((√

mn
)m)⌉ ≤ ⌈logρ

((√
nn
)m)⌉

=
⌈
m logρ n

⌉
.

Hence the iteration count is polynomial in m and n. The bound does not hold if the initial
basis is obtained by Gaussian elimination with partial or rook pivoting.

Knuth [42] derived a similar bound for a specific version of Algorithm 1, which adds one
row of A at a time and immediately restores the maximum volume property of the enlarged
basis matrix in the new row slice. If the iteration count of Algorithm 1 for ρ = 1 can be made
polynomial in m and n by a specific choice of pivot element is an open question. Finding a
submatrix of global maximum volume is known to be NP-complete [65], but that proof does
not extend to finding a local maximum volume basis.

The algorithm can be extended to row and column slices. We now allow A ∈ Rm×n to be
rank deficient and want to determine an m × k submatrix of local ρ-maximum volume for a
given k ≤ rank(A). The idea for the algorithm is the link to the matrix ATA and was first
described by Pan [64]. The presentation given here is more general by not making use of a
specific matrix factorization.

Let A be partitioned into
[
A1 A2

]
, where A1 has k columns and rank k. Then

ATA =

[
AT1
AT2

] [
A1 A2

]
=

[
AT1 A1 AT1 A2

AT2 A1 AT2 A2

]
=:

[
C11 C12

C21 C22

]
= C,

and a column exchange between A1 and A2 results in a row and column interchange in ATA.
Because vol(A1) = vol(C11)1/2, A1 has local ρ-maximum volume in A if and only if vol(C11)
cannot be increased by more than a factor ρ2 by a symmetric row and column interchange in
C. To test that condition by means of Lemma 2.4, the determinant of all 2× 2 submatrices of
C× that occupy a diagonal entry in both diagonal blocks must be investigated. If |detS| > ρ2

for such a submatrix S, the corresponding columns of A1 and A2 are exchanged, increasing the
volume of A1 by the factor |detS|1/2 > ρ.

The algorithm, in fact, searches for a k×k principal submatrix of local ρ2-maximum volume
in C (i. e. a submatrix determined by the same set of row and column indices). In each step
there are k(n− k) possible choices for an exchange, so that the complexity of the algorithm is
similar to finding a k×k basis matrix in a k×n matrix. The computations require more effort,
however. Implementations of both algorithms using LU factorization are described by Pan [64]
and are compared in terms of arithmetic operations.

2.3 Empirical Tests

Implementing Algorithm 1 requires a rule for choosing the pivot element in case there is more
than one entry of the tableau matrix eligible. Goreinov et al. [28] used the maximum absolute
entry, which is the obvious choice with regard to minimizing the number of updates. But this
rule requires to “scan” the entire tableau matrix after each basis change, an operation that
is costly for dense matrices and impractical for sparse matrices, where the tableau cannot be
stored explicitly but has to be computed one column or row at a time.

A more economic method is given in Algorithm 2. Rather than updating the tableau matrix
after each basis change, the algorithm can be implemented by maintaining a representation of
A−1
B and computing a tableau column when it is scanned. For dense matrices either an LU

or a QR factorization of AB can be used, for which numerically stable update schemes exist
(see Fletcher and Matthews [17] and Section 12.5.2 in [23]). For sparse matrices LU update
techniques are readily available from implementations of the simplex method. Algorithm 2

12

Algorithm 2 Maxvolume Sequential

Input: A ∈ Rm×n of rank m, starting basis B, ρ ≥ 1.
1: for pass = 1, 2, . . . do
2: updates = 0 // count basis updates in this pass
3: for j = 1 to n do
4: if j /∈ B then
5: Compute v = A−1

B Aj .
6: p = arg maxi |vi|
7: if |vp| > ρ then
8: Bp = j
9: updates = updates+ 1

10: Stop if updates = 0.

name m n nnz(A)
bab3 22,478 393,457 3,097,799
dbic1 33,598 140,205 781,668
karted 46,501 133,114 1,770,336
nug30 52,260 379,350 1,567,800
pds-100 94,994 433,867 933,313
rail02 54,524 192,618 599,436
rail4284 4,176 1,090,526 11,174,639
rmine14 32,205 268,535 660,346
srd120 186,440 357,070 9,804,510
stp3d 97,936 137,646 500,753
watson 2 185,474 378,986 1,040,238

Table 1: Test set of LP matrices.

terminates after a complete “pass” over the columns of A without requiring an update, since
then all entries of the final tableau were computed and are bounded by ρ.

To investigate the number of passes and basis updates, the algorithm was applied to a
set of LP matrices that originated from an early iteration of an interior point solver. In this
application the matrices have the form A = ÂD, where Â is the constraint matrix from the LP
model and D is a positive definite diagonal matrix. The test problems and their dimensions
are listed in Table 1. The matrices were selected from a larger set of LP models (used in
Chapter 8) because they represent a variety of sparsity patterns and columns-per-row ratios
n/m. An initial basis was computed by a crash procedure that preferred columns corresponding
to larger diagonal entries of D. Algorithm 2 was then applied to the matrix A with ρ = 2.0.
The sparse linear algebra operations were provided by subroutines of the author’s LP solver.

In Table 2 the number of basis updates, the computation time and the volume increase are
reported for each pass of the algorithm, where the latter quantity is defined as

volinc = log2

(
vol(Bnew)

vol(Bold)

)
with Bold and Bnew being the basis matrix at the beginning and end of the pass, respectively.
volinc was computed from the fact that vol(Bnew)/ vol(Bold) is the absolute value of the product
of the pivot elements vp from the current pass (see Lemma 2.3(i)).

13

name pass 1 pass 2 pass 3 pass 4 pass 5 pass 6 pass 7 pass 8 total

updates 2913 2 0 2915
bab3 volinc 1.39E+04 2.82E+00 0.00E+00 1.39E+04

time 8.6 7.7 7.8 24.1

updates 9495 18 1 1 0 9515
dbic1 volinc 4.48E+04 2.12E+01 1.19E+00 1.20E+00 0.00E+00 4.48E+04

time 9.7 3.3 3.3 3.1 3.3 22.8

updates 26409 296 107 38 26 10 1 0 26887
karted volinc 1.00E+05 3.51E+02 1.20E+02 4.24E+01 2.81E+01 1.05E+01 1.14E+00 0.00E+00 1.01E+05

time 1570.3 982.2 1009.0 1018.9 955.4 985.3 931.7 981.9 8434.6

updates 36848 82 45 14 12 8 0 37009
nug30 volinc 1.40E+05 9.03E+01 4.84E+01 1.52E+01 1.24E+01 8.25E+00 0.00E+00 1.40E+05

time 4931.4 4484.5 4536.3 4515.8 4436.0 4566.9 4519.9 31990.8

updates 5670 0 5670
pds-100 volinc 1.10E+04 0.00E+00 1.10E+04

time 15.6 14.8 30.4

updates 19808 61 16 1 3 0 19889
rail02 volinc 6.34E+04 6.60E+01 1.73E+01 1.04E+00 3.04E+00 0.00E+00 6.35E+04

time 159.5 105.4 104.8 102.8 105.0 102.7 680.3

updates 3531 2 0 3533
rail4284 volinc 1.69E+04 2.24E+00 0.00E+00 1.69E+04

time 219.8 215.8 217.2 652.8

updates 12198 4 0 12202
rmine14 volinc 2.69E+04 4.29E+00 0.00E+00 2.69E+04

time 43.7 34.6 36.3 114.7

updates 45741 0 45741
srd120 volinc 1.07E+05 0.00E+00 1.07E+05

time 142.8 124.1 266.9

updates 5688 18 2 0 5708
stp3d volinc 1.20E+04 1.99E+01 2.06E+00 0.00E+00 1.20E+04

time 25.4 23.9 22.7 23.2 95.2

updates 5434 0 5434
watson 2 volinc 3.49E+04 0.00E+00 3.49E+04

time 14.4 4.1 18.5

Table 2: Statistics for Algorithm 2. Times are reported in seconds.

14

The total number of basis updates ranged between 0.03m and 0.85m. This quantity depends
on the initial basis as well as the order in which columns of A were scanned. An ideal scanning
order would yield a maximum volume basis after one pass, but such an order is, of course, not
known in practice. By using the natural order in Algorithm 2, the vast majority of updates
and most of the volume increase were still attributed to the first pass.

The final pass shows the time for computing all entries of A−1
B AN without an update. For

most problems this was a large fraction of the time for pass 1, meaning that the scanning
operations were the dominating cost of the algorithm. The large differences in the computation
times were caused by sparsity in A−1

B AN . For some LP models (such as pds-100 and watson 2)
the tableau matrix is sparse for all relevant bases, allowing one to compute a column in much
less than order of m time. Such problems are called “hypersparse” in simplex community (see
Wunderling [81] and Hall and McKinnon [33]). In other cases the A−1

B AN are dense matrices,
so that one pass of the algorithm requires at least order of m(n−m) arithmetic operations.

A general conclusion is that the ratio of number of basis updates to computation time is
very uneconomical in all but the first pass. Similar observations were made by I. S. Duff and J.
K. Reid (private communication), who experimented with the same approach on matrices from
least squares problems.

For use in practice it can be appropriate to terminate the algorithm after one pass over
the tableau matrix. Although there is no guarantee for

∥∥A−1
B AN

∥∥
max

to be bounded, in the
author’s experience the basis is as effective as a maximum volume basis when applied as basis
preconditioner. For application in the interior point solver, where a good starting basis is
available, we will reduce the computation time even further by scanning only a heuristically
chosen subset of the columns (Section 6.5).

2.4 A Rank Revealing Method

This section presents an application of the local maximum volume concept that was developed
by the author in [73]. Given an arbitrary matrix A ∈ Rm×n, the task is to determine the rank
of A in the numerical sense. By that we mean to determine an index r such that σr ≥ ε and
σr+1 = O(ε) for a given tolerance ε > 0, where σ1 ≥ · · · ≥ σd ≥ 0 (d = min(m,n)) are the
singular values of A. To treat the case r = d conveniently, we define σd+1 := 0. Our definition
of numerical rank relaxes the condition σr ≥ ε > σr+1, which is only achievable by computing
the singular values. Note that the numerical rank in the relaxed definition need not be unique
unless there is a clear gap in the spectrum. In addition to the rank r, an r × r submatrix of A
shall be identified whose minimum singular value is not too much smaller than σr.

The stated problem arises, for example, in solving underdetermined least squares problems
in which some of the model parameters should be removed to obtain a well defined solution. In
this case it is not sufficient to determine the rank or the singular values of A; a well conditioned
submatrix is explicitly required to find the set of redundant parameters. Because the matrices in
least squares problems are often large and sparse, methods based on orthogonal factorizations
can be expensive in terms of computation time and memory requirement. We are therefore
interested in solving the above problem by Gaussian elimination, which is generally better
suited for sparse matrices.

It is well known that Gaussian elimination with complete pivoting may not reveal a near
singularity by means of a small pivot element. For the example from Peters and Wilkinson [66],

A =

1 −1 · · · −1 −1

1 −1
. . .

...
1 −1

1

 ∈ Rm×m,

15

complete pivoting allows to choose the diagonal entries as pivots, so that no eliminations are
needed and A is determined to be of full rank. It is not revealed that σm(A) = O(2−m) (see
[64, Section 5]) and the numerical rank of A to be m− 1 for m moderately large.

We shall see that the numerical rank of A is revealed by a basis matrix of local maximum
volume in A =

[
A βIm

]
for a suitably chosen β. As in the proof of Lemma 2.4, a basis B for

A uniquely defines a submatrix A11 of A through the partitioning

AB =

[
A11 0
A21 βIm−k

]
, AN =

[
βIk A12

0 A22

]
, (2.3)

where the rightmost m − k columns of AB and the leftmost k columns of AN are logical (the
indices in B and N can always be permuted to obtain that form). The dimension of A11, i. e.
the number of structural columns in the basis, is the connection to the numerical rank of A.

Lemma 2.6. Let ε > 0 and ρ ≥ 1 be given parameters. Let β = min(m,n)ερ and B be a local
ρ-maximum volume basis for A =

[
A βIm

]
. The dimension of A11 defined through (2.3) is

the numerical rank of A under tolerance ε.

Proof. Recall that the maximum absolute entry and the 2-norm of any matrix A ∈ Rm×n are
related by

‖A‖max ≤ ‖A‖ ≤
√
mn ‖A‖max . (2.4)

Let r be the dimension of A11. We need to show that σr(A) ≥ ε and σr+1(A) = O(ε). Because
AB has local ρ-maximum volume in A, all entries of

A−1
B AN =

[
βA−1

11 A−1
11 A12

−A21A
−1
11 β−1A/A11

]
(2.5)

are bounded by ρ in absolute value. (If r = m, the second block row is vacuous.) In particular∥∥A−1
11

∥∥
max
≤ ρβ−1, ‖A/A11‖max ≤ ρβ. (2.6)

For the first part we use from the interlacing property of the singular values [23, Corol-
lary 8.6.3] that for any r × r submatrix A11 of A, σr(A11) ≤ σr(A). Therefore, by (2.4),

1

σr(A)
≤ 1

σmin(A11)
=
∥∥A−1

11

∥∥ ≤ r ∥∥A−1
11

∥∥
max
≤ rρβ−1 ≤ 1

ε
,

so that σr(A) ≥ ε.
The second part is trivial if r = m. Otherwise we use from [64, Theorem 2.7] that for any

nonsingular r × r submatrix A11 of A, σr+1(A) ≤ ‖A/A11‖. Therefore, by (2.4),

σr+1(A) ≤ ‖A/A11‖ ≤ ‖A/A11‖max

√
(m− r)(n− r) ≤ βρ

√
(m− r)(n− r)

= ερ2 min(m,n)
√

(m− r)(n− r).

It follows that σr+1(A) is bounded in terms of ε for fixed dimension of A.

Notice from (2.6) how β balances between keeping the inverse of A11 bounded and getting
the Schur complement small. The first condition achieves that r ≤ rank(A) and the second
condition that r ≥ rank(A) in the numerical sense. Including ρ in the definition of β guarantees
that σr(A) ≥ ε at the cost that the bound on σr+1(A) grows with ρ2. In computational practice
a reasonable choice can be ε = εmach ‖A‖max, where εmach is the relative machine precision.
The maximum-norm condition number of A11 is then bounded by (rεmach)−1, so that A11 is
nonsingular in finite precision arithmetic.

It remains to be shown that A11 has the desired property that σmin(A11) is close to σr(A).
The key ingredient here is to observe that A11 has local (2ρ2)-maximum volume in A.

16

Lemma 2.7. The submatrix A11 obtained in Lemma 2.6 has local (2ρ2)-maximum volume in
A.

Proof. Because all entries of (2.5) are bounded by ρ in absolute value, the determinant of any

submatrix

[
s11 s12

s21 s22

]
of A× with an entry in each block is bounded by

|s11s22 − s21s12| ≤
∥∥A−1

11

∥∥
max
‖A/A11‖max +

∥∥A21A
−1
11

∥∥
max

∥∥A−1
11 A12

∥∥
max

≤ ρβ−1ρβ + ρρ = 2ρ2.

The claim follows from Corollary 2.5.

The following two lemmas derive bounds on σmin(A11) and ‖A/A11‖max that hold for any
submatrix A11 of local maximum volume in A.

Lemma 2.8. Let A ∈ Rm×n and A11 be a k×k submatrix (k < min(m,n)) of local ρ-maximum
volume. Then

‖A/A11‖max ≤ ρ(k + 1)σk+1(A).

Proof. The inequality was proved by Goreinov and Tyrtyshnikov [29, Theorem 2.1] under the
assumption that A11 has global maximum volume in A. Because their proof actually only
uses that A11 has maximum volume in all containing (k + 1) × (k + 1) submatrices of A, the
result remains valid for our definition of local maximum volume. The proof is repeated here for
completeness.

Consider any (k + 1)× (k + 1) submatrix of A of the form

Â =

[
A11 b
cT α

]
.

Then γ = α − cTA−1
11 b is an entry of A/A11 and each entry of A/A11 has this form for a

particular Â. Therefore it suffices to show that |γ| ≤ ρ(k + 1)σk+1(A).
If Â is singular, then γ = 0 and the claim is trivial. Otherwise a straightforward computation

verifies that

Â−1 = γ−1

[
H f
gT 1

]
,

where
f = −A−1

11 b, g = −A−T11 c, H = γA−1
11 + fgT .

Considering

Â× =

[
A−1

11 A−1
11 b

−cTA−1
11 γ

]
and applying Corollary 2.5 shows that all entries of f , g and H are bounded by ρ in absolute

value. Hence
∥∥∥Â−1

∥∥∥
max
≤ |γ−1|ρ. It follows that

|γ| ≤ ρ 1∥∥∥Â−1
∥∥∥

max

≤ ρ k + 1∥∥∥Â−1
∥∥∥ = ρ(k + 1)σk+1(Â) ≤ ρ(k + 1)σk+1(A),

where the last inequality comes from the interlacing property of singular values [23, Corol-
lary 8.6.3].

Lemma 2.9. Let A ∈ Rm×n and A11 be a k × k submatrix of local ρ-maximum volume. Then

σk(A) ≤ ρ
√

(m− k + 1)(n− k + 1)kσk(A11).

17

Proof. If k = 1, then A11 is scalar and because of local ρ-maximum volume it satisfies ρ|A11| ≥
‖A‖max. Therefore

σ1(A) ≤
√
mn ‖A‖max ≤

√
mnρ|A11| = ρ

√
mnσ1(A11).

If k > 1, let B be a (k − 1) × (k − 1) submatrix of A11 of 1-maximum volume in A11.
Consider any k × k submatrix of A of the form

A′11 =

[
B b
cT α

]
.

Because A′11 differs from A11 by at most one row and one column, and because A11 has local
ρ-maximum volume in A,

ρ vol(A11) ≥ vol(A′11).

From the determinant property of the Schur complement, det(A11) = det(B) det(A11/B), it
follows that for the scalar A11/B

ρ|A11/B| = ρ
vol(A11)

vol(B)
≥ vol(A′11)

vol(B)
= |A′11/B|.

Because A′11/B is an entry of A/B and each entry of A/B has this form for a particular A′11,
we obtain

ρ|A11/B| ≥ ‖A/B‖max .

Therefore

σk(A) ≤ ‖A/B‖ ≤
√

(m− k + 1)(n− k + 1) ‖A/B‖max

≤ ρ
√

(m− k + 1)(n− k + 1)|A11/B|

≤ ρ
√

(m− k + 1)(n− k + 1)kσk(A11),

where the first inequality is from [64, Theorem 2.7] and the last inequality is obtained by
applying Lemma 2.8 to the (k − 1)× (k − 1) submatrix B of A11.

The final theorem summarizes the bounds on the singular values of A that are revealed by
the submatrix A11 determined through a ρ-maximum volume basis in A.

Theorem 2.10. Let the submatrix A11 that is obtained from Lemma 2.6 have dimension k×k.
Then

σk(A) ≥ σmin(A11) ≥ 1

2ρ2k
√

(m− k + 1)(n− k + 1)
σk(A), (2.7)

σk+1(A) ≤ ‖A/A11‖ ≤ 2ρ2(k + 1)
√

(m− k)(n− k)σk+1(A). (2.8)

Proof. The left inequalities hold for any nonsingular k × k submatrix. The left side of (2.7)
follows from the interlacing property of the singular values [23, Corollary 8.6.3] and the left
side of (2.8) was proved by Pan [64, Theorem 2.7]. The right inequalities require that A11 has
(2ρ2)-maximum volume in A (see Lemma 2.7) and follow from Lemmas 2.9 and 2.8.

18

2.5 Implementation for Dense Matrices

The theory from the previous section leads to an algorithm for finding a square nonsingular
submatrix of A that reveals the numerical rank:

Algorithm 3 Rank Revealing Method

Input: A ∈ Rm×n
1: Choose ρ ≥ 1, β > 0 and set A =

[
A βIm

]
.

2: Initialize B = {n+ 1, . . . , n+m} and use Algorithm 1 to update B to a ρ-maximum volume
basis for A.

3: Obtain A11 through the partitioning (2.3).

A tableau form implementation of Algorithm 3 has been written for testing purposes. Ini-
tially the matrix Ā =

[
A Im

]
is stored and B = {n+ 1, . . . , n+m}. Logical columns are not

explicitly scaled by β to avoid values with very different orders of magnitude in the computa-
tion. Instead multiplications with β and β−1 are applied on the fly when logical columns are
involved. Each iteration of the update procedure in step 2 chooses a pivot element from

Ā−1
B ĀN =

[
A−1

11 A−1
11 A12

−A21A
−1
11 A/A11

]
(2.9)

and transforms the corresponding column of Ā−1
B Ā into a unit column by applying row opera-

tions. The pivot element is chosen in the following order:

(i) If |Ā−1
B Ā| has entries corresponding to block A−1

11 that are larger than ρβ−1, the maximum
such entry is chosen as pivot.

(ii) If |Ā−1
B Ā| has entries corresponding to block A−1

11 A12 or −A21A
−1
11 that are larger than ρ,

the maximum such entry is chosen as pivot.

(iii) If |Ā−1
B Ā| has entries corresponding to block A/A11 that are larger than ρβ, the maximum

such entry is chosen as pivot.

The order promotes having logical columns in the basis, which is advantageous for numerical
stability. If none of the cases (i)–(iii) yields a pivot element, the update procedure terminates.

A test set of real-world matrices was collected from the San Jose State University Singular
Matrix Database [19], using the 327 matrices (as of January 2018) for which min(m,n) ≤
1000. The matrices were transposed if necessary so that m ≤ n. For comparison a singular
value decomposition (SVD) of each matrix A was computed and the numerical rank of A was
determined as the largest index s such that

σs(A) ≥ max(m,n)εmachσ1(A).

This criterion is used by the MATLAB rank function, and all matrices in the test set were rank
deficient in its sense. In our algorithm β was chosen comparably as max(m,n)εmach ‖A‖max

and ρ was initially set to 2.0.
For 56 matrices the numerical ranks determined by SVD and the maximum volume basis

(MVB) differed. This is legitimate if there is no large gap between any two consecutive singular
values. To verify that the MVB rank r is acceptable with respect to the singular values of
A, the ratios σr(A)/σs(A) and σr+1(A)/σs+1(A) are plotted in Figure 1 for those matrices
where r 6= s. Because the ratios are not too far away from 1.0 it can be concluded that
σr+1(A) = O(σs+1(A)) and σr(A) = Ω(σs(A)). Hence for the chosen β the rank determined by
the MVB is in accordance with the spectrum of A.

19

56 matrices with ill-defined rank
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Figure 1: Ratios σr(A)/σs(A) (“+”) and σr+1(A)/σs+1(A) (“o”) for matrices with r 6= s. The
“o” marker is missing when r = m (7 matrices).

In all test cases A11 satisfied σr(A11)/σr(A) ≥ 0.004 and the geometric mean of these ratios
was 0.25, confirming that the maximum volume criterion yields a good submatrix in practice.
The ratios did not improve relevantly for ρ closer to 1.

Because the update procedure in Algorithm 3 starts from the logical basis, a minimum of
r basis updates is needed. For ρ = 2.0 the average number of basis updates (by taking the
geometric mean over the 327 matrices) was 1.002r. The computation time of the tableau form
algorithm in this case is about twice the time for an LU factorization with complete pivoting
(which is not rank revealing). For ρ = 1.1 and ρ = 1.001 the average number of pivots increased
to 1.24r and 1.68r, respectively.

2.6 Comparison to Pan’s Method

Other than the method from Section 2.4, the only practical rank revealing factorization that
does not require orthogonal operations is that of Pan [64]. Pan’s method uses the maximum
volume concept in a different manner to find a square submatrix of A ∈ Rm×n. Assuming that
k ≤ rank(A) is given, the method first chooses a slice of k columns, say AJ , that has local
ρ-maximum volume in A. In a second step it chooses a k × k submatrix of local ρ-maximum
volume in AJ . Let us say that the resulting submatrix A11 has “normal” ρ-maximum volume
in A to distinguish it from a local maximum volume submatrix in our definition. Pan proved
the following bounds on the singular values for m = n:

σk(A) ≥ σmin(A11) ≥ 1

k(n− k)ρ2 + 1
σk(A),

σk+1(A) ≤ ‖A/A11‖ ≤
(
k(n− k)ρ2 + 1

)
σk+1(A).

These bounds are almost identical to those in Theorem 2.10. Although the setting in [64]
assumed the dimension of A11 to be given, choosing it by means of a tolerance ε on σk(A) can
be easily incorporated into the algorithm for finding the column subset J . Therefore Pan’s
method and our method provide the same functionality.

20

Regarding their implementation, Pan’s method has a drawback. Its first step requires com-
putations with the normal matrix ATA for finding the column subset J as outlined in Sec-
tion 2.2. For dense matrices these operations are implementable but offer no advantage over
rank revealing orthogonal methods, which require roughly the same number of arithmetic oper-
ations (see the comparison in [64]). For sparse matrices the algorithm would require to compute
and update a sparse Cholesky factorization of ATJAJ . While this is possible (see Davis and
Hager [14]), it can be assumed to be much more costly than operations with a basis matrix of[
A Im

]
.

While analysing the methods, the author suspected that normal and local maximum volume
might be the same property, but such a conjecture turned out to be false. Two examples are
given to prove that neither property implies the other. First, consider

A =

1 1
1 1

1 1
1 1 1
1

1
1

.

It can be computed analytically that the singular values of the submatrix formed of any three
columns are

(√
5,
√

2,
√

2
)
, so that the first three columns have local maximum volume in A.

The leading 3×3 block A11 obviously has local maximum volume within the first three columns,
so that it has normal maximum volume in A. However, A11 does not have global maximum
volume in the leading 4×4 block because exchanging columns 3 and 4 and rows 3 and 4 increases
vol(A11) by a factor 2. (This is easily verified from Lemma 2.4.) Therefore A11 does not have
local maximum volume in A.

For the opposite part consider

A =

1 0 0
0 1 0
d −1 −d
−1 d −d

with d = 0.99 and let A11 be the leading 2 × 2 block. By examining the determinant of the
relevant 2 × 2 submatrices of A× it can be verified that A11 has local maximum volume in
A. However, by computing singular values we obtain the volume of the matrix composed of
columns 1 and 2 to be ≈ 2.23 and the volume of the matrix composed of columns 1 and 3 to
be ≈ 2.42. Hence the first two columns do not have local maximum volume in A, and neither
does A11 have normal maximum volume in A.

21

3 Basis Preconditioning for Least Squares

The least squares problem

minimize
y

∥∥c−ATy∥∥2
(3.1)

arises frequently as a subproblem in algorithms for numerical optimization. Its native in-
terpretation is to find a vector of model parameters y for fitting model predictions ATj y to

measurements cj in such a way that the 2-norm of the residual x = c − ATy is minimum.
While stated as an optimization problem, it actually means solving the “KKT system”[

I AT

A 0

](
x
y

)
=

(
c
b

)
(3.2)

for b = 0. For most of this chapter we assume the m×n matrix A to have rank m ≤ n, so that
the KKT matrix is nonsingular and (3.1) has a unique minimizer.

Basis preconditioning transforms the KKT system by means of a basis matrix AB to make its
spectrum more favourable for an iterative method. For ill conditioned problems, as those arising
in the linear programming IPM, preconditioning is key to obtaining an acceptable convergence
rate of the linear solver. This chapter discusses basis preconditioning for (3.2) and presents
features of the method that are particularly useful in the context of parameter estimation. To
simplify notation, let B = AB and N = AN throughout.

3.1 Spectrum of the Preconditioned Matrix

It is common practice to reduce the KKT system (3.2) to normal equations

AATy = Ac− b =: r. (3.3)

If A has rank m, the normal matrix is positive definite, whereas the KKT matrix has n positive
and m negative eigenvalues. A more precise characterization of their spectra is given by the
following lemma.

Lemma 3.1. Let the m × n matrix A have rank m. The eigenvalues of

[
I AT

A 0

]
are 1 with

multiplicity n−m and 1
2 ±

√
1
4 + νk, where νk, for 1 ≤ k ≤ m, are the eigenvalues of AAT .

Proof. By standard argument. Consider the linear equations[
I AT

A 0

](
x
y

)
= λ

(
x
y

)
for a scalar λ 6= 0. If y = 0, solutions are obtained if x ∈ null(A) and λ = 1, yielding n −m
eigenvectors with eigenvalue 1. If y 6= 0, it follows from

Ax+AATy = λAx

=⇒ AATy = (λ− 1)Ax

=⇒ AATy = (λ− 1)λy

that y is eigenvector to AAT with eigenvalue (λ − 1)λ. Solving (λ − 1)λ = νk for 1 ≤ k ≤ m
gives the remaining 2m eigenvalues of the KKT matrix.

22

Basis preconditioning can be applied to the KKT system or the normal equations. Given a
basis matrix B and defining u = BTy, the symmetric variant transforms (3.2) into[

I ATB−T

B−1A 0

](
x
u

)
=

(
c

B−1b

)
(3.4)

and (3.3) into
B−1AATB−Tu = B−1r. (3.5)

Notice that (3.5) are the normal equations corresponding to (3.4), so that the spectra of the
preconditioned matrices are related through Lemma 3.1. It therefore suffices to analyse the
numerical properties of one system.

The preconditioned normal matrix is symmetric positive definite and writing it as

C := B−1AATB−T = Im +B−1NNTB−T

shows that its eigenvalues are bounded from below by 1. The preconditioning will therefore be

effective if σmax(C) =
∥∥B−1A

∥∥2
is of moderate size. This need not be the case if B is obtained

through LU factorization of A, as it is often done in practice. For example, the partitioning
into

B =

1 −1 · · · −1

1 −1
. . .

...
1 −1

1

 , N =

1
1
...
1
1

could have been obtained by LU factorization with any type of pivoting; yet

∥∥B−1A
∥∥ grows

exponentially with m.
Arioli and Duff [7] were the first to consider the maximum volume criterion for choosing a

basis preconditioner. A (local) ρ-maximum volume basis bounds the entries in B−1A by ρ ≥ 1
in absolute value, so that∥∥B−1A

∥∥2
= 1 +

∥∥B−1N
∥∥2 ≤ 1 +

∥∥B−1N
∥∥2

F
≤ 1 + ρ2 nnz(B−1N) ≤ 1 + ρ2m(n−m).

Because a maximum volume basis exists for any matrix A of full row rank, basis preconditioning
can guarantee a 1 + m(n −m) bound on the condition number of the preconditioned normal
matrix, independently of the singular values of A. If the tableau matrix is sparse, the relevant
quantity for the bound is the number of nonzero entries.

The convergence rate of an iterative method actually depends on the eigenvalue distribution
of the matrix rather than its condition number, so that minimizing

∥∥B−1A
∥∥ should not be the

ultimate goal for a preconditioner. A quantity that characterizes the whole spectrum of C is
its nuclear norm ‖C‖∗, which is the sum of its eigenvalues. Because the nuclear norm of a
symmetric positive semidefinite matrix is the sum of its diagonal entries, we have

‖C‖∗ = m+
∥∥B−1NNTB−T

∥∥
∗ = m+

∥∥B−1N
∥∥2

F
.

Hence minimizing the Frobenius norm of B−1N minimizes the nuclear norm of C, which is
likely to avoid a uniform spectrum. While Arioli and Duff argued for the maximum volume
basis because they could not find an algorithmic approach for choosing B such that

∥∥B−1A
∥∥

is minimum, the maximum volume criterion seems to be preferable anyway because it directly
bounds

∥∥B−1N
∥∥
F

.
It is insightful to derive an update formula for C when basis index Bp is replaced by j ∈ N .

Denote wT = eTpB
−1A, v = B−1Aj and B′ the updated basis matrix. The update of B−1A

23

proceeds by adding multiples of row wT to other rows such that column j becomes unit column
ep:

(B′)−1A = B−1A+

−v1/vp
...

−(vp − 1)/vp
...

−vm/vp

w
T =: B−1A+ ηwT .

Here η has been defined as the vector of multipliers. The pivot operation changes C to

C ′ = C +B−1AwηT + ηwTATB−T + ηwTwηT

= C +B−1AATB−Tepη
T + ηeTpB

−1AATB−T + ‖w‖2 ηηT

= C + cηT + ηcT + ‖w‖2 ηηT

= C +
1

2
(c+ η)(c+ η)T − 1

2
(c− η)(c− η)T + ‖w‖2 ηηT , (3.6)

where c = Cp. From the final form it is obvious that C changes by a rank-2 operation and
‖C‖∗ changes by

1

2
‖c+ η‖2 − 1

2
‖c− η‖2 + ‖w‖2 ‖η‖2 = 2cTη + ‖w‖2 ‖η‖2 . (3.7)

The formula shows that ‖C‖∗ decreases with a basis update only if cTη is sufficiently negative.
This need not be the case for an update that increases vol(B). For example, consider

A =
[
B N

]
=

1 +2 1 · · · 1

1 −2 0 · · · 0
1 −2 0 · · · 0

1 −2 0 · · · 0

 ,
where the last column is repeated 10 times. It is easily verified that the spectrum of C is
{21, 7, 1, 1}. After pivoting on entry +2, all entries in the tableau are bounded by 1, so that the
new basis has maximum volume. The update changes the spectrum of C to {36.75, 1, 1, 1} and
therefore increases ‖C‖∗. The gist of the example is that the pivot operation fills in a large part
of the tableau matrix and thereby increases its Frobenius norm. Although in this particular
case the spectrum after the update is desirable (C has only two distinct eigenvalues), in general
we can expect that a larger ‖C‖∗ leads to slower convergence of an iterative method.

It seems possible to derive an algorithm from (3.7) that works similarly to the maximum
volume algorithms from Chapter 2 but yields a basis that minimizes

∥∥B−1N
∥∥
F

among all
neighbouring bases. Choosing the updates would be significantly more expensive, but the
smaller Frobenius norm might lead to a more favourable spectrum of the preconditioned matrix.
In particular, the method is likely to yield a sparse tableau matrix if it exists. The idea has not
been implemented for the present work, but is kept in mind for further investigation.

3.2 Numerical Investigation

It is informative to compare the bounds on the spectrum of C discussed above on some real-world
problems. A set of 15 matrices was obtained from an LP interior point solver, where A = ÂD
with Â being the constraint matrix from the LP model and D a positive definite diagonal
matrix. D was recorded in the first interior point iteration in which the iterative method for
solving AATx = b did not converge in 500 iterations with a diagonal preconditioner. The

24

name m n nnz(A) σmin(AAT) σmax(AAT)
bab3 22,478 415,935 3,120,277 1.30E−07 1.89E+02
buildingenergy 225,031 353,726 908,875 9.54E−02 5.46E+06
datt256 9,863 206,010 1,134,485 1.81E−04 4.40E+02
L1 sixm250obs 154,168 462,452 794,069 7.19E−01 1.69E+06
mining 661,094 1,010,052 3,415,524 6.96E−07 4.04E+06
netdiversion 99,581 228,549 595,459 7.07E−09 3.41E−02
ns1853823 223,144 436,320 1,570,068 5.39E−05 5.71E+02
nug20 14,098 86,644 296,004 7.91E−07 1.34E−01
pds-100 94,994 528,861 1,028,307 2.35E−06 7.67E+01
rail03 129,647 696,742 1,479,165 2.22E−04 1.94E+02
srd060 93,200 271,710 2,889,410 2.80E+04 2.17E+10
stp3d 97,936 235,582 598,689 3.68E−05 2.37E+01
ts-palko 22,002 69,237 1,098,905 2.27E+00 1.48E+07
vpphard2 136,399 275,633 698,357 5.98E−05 3.87E+02
watson 2 185,474 564,460 1,225,712 1.11E+01 2.67E+07

Table 3: Test set of scaled LP matrices from an interior point solver.

name σmax(C)
∥∥B−1N

∥∥2

F
ρ2 nnz(B−1N) ρ2m(n−m)

bab3 1.10E+04 3.12E+05 3.86E+08 3.54E+10
buildingenergy 2.16E+06 7.52E+06 4.07E+10 1.16E+11
datt256 1.44E+06 1.45E+07 4.14E+09 7.74E+09
L1 sixm250obs 6.62E+04 3.86E+05 1.39E+10 1.90E+11
mining 3.08E+03 2.85E+05 5.89E+08 9.23E+11
netdiversion 3.70E+04 1.62E+06 6.37E+07 5.14E+10
ns1853823 7.46E+05 3.17E+06 2.17E+10 1.90E+11
nug20 1.95E+06 2.11E+07 4.03E+09 4.09E+09
pds-100 1.00E+05 1.16E+06 4.75E+08 1.65E+11
rail03 1.36E+05 2.24E+06 1.60E+09 2.94E+11
srd060 3.00E+01 1.32E+05 2.99E+06 6.65E+10
stp3d 2.41E+05 2.81E+06 6.63E+09 5.39E+10
ts-palko 5.29E+04 4.30E+05 4.16E+09 4.16E+09
vpphard2 2.53E+03 3.19E+04 7.51E+06 7.60E+10
watson 2 2.50E+03 4.76E+05 2.32E+07 2.81E+11

Table 4: Basis preconditioning with a 2.0-maximum volume basis.

25

matrices and their dimensions are listed in Table 3. The lower and upper ends of the spectrum
of AAT show that the normal matrices are moderately ill conditioned.

For each matrix A a ρ-maximum volume basis with ρ = 2.0 was computed. In Table 4 the
quantities discussed in the previous section are compared, for which we have

σmax(C) ≤ 1 +
∥∥B−1N

∥∥2

F
≤ 1 + ρ2 nnz(B−1N) ≤ 1 + ρ2m(n−m).

Because σmin(C) ≥ 1, it is certain for all problems except nug20 that the preconditioning
decreased the 2-norm condition number of the normal matrix. When σmin(AAT) was close
to zero, the whole spectrum was shifted to the right and the maximum eigenvalue increased.

For most of the matrices
∥∥B−1N

∥∥2

F
was about one order of magnitude larger than σmax(C),

whereas the bound given by ρ2 nnz(B−1N) was loose. This means that the bound on cond(C)
given by the maximum volume property is far too conservative in practice, even if sparsity of
the tableau matrix is taken into account.

3.3 Additional Columns

For some matrices it can be necessary or advantageous to treat a set of columns separately.
These can be columns that were added to the problem after a (good) basis was determined, or
columns that have significantly more nonzeros than the columns in the other part. The first
case arises in parameter estimation when a few measurements are added to the least squares
problem after computing an initial estimate. The second case frequently occurs for LP matrices.

Assume that
A =

[
AB AN AR

]
,

where R is the set of nr “remaining” columns. For the moment it is assumed that a basis
matrix exists after dropping AR from A. The basis preconditioned normal matrix becomes

C = A−1
B AATA−TB = Im +A−1

B ARA
T
RA
−T
B +A−1

B ANA
T
NA
−T
B =: M +A−1

B ANA
T
NA
−T
B .

Because AR was ignored while choosing the basis, C can have nr large eigenvalues. The idea to
bound the spectrum of C is using M as preconditioner for the system Cu = A−1

B r. Assuming
that nr is small, the second term of M is a low-rank matrix and an inverse representation is
obtained from the Sherman-Morrison-Woodbury formula as

M−1 = Im −A−1
B AR(Inr

+ATRA
−T
B A−1

B AR)−1ATRA
−T
B .

Operations with M−1 can be implemented either by storing the matrix A−1
B AR explicitly (usu-

ally in dense format) or by performing matrix-vector products with AR and ATR and a forward
and transpose solve with AB. In any case the columns of A−1

B AR need to be computed to
assemble the matrix in parenthesis for its Cholesky factorization.

For analysing the spectrum of the preconditioned system we can assume left-preconditioning
with M , recalling that the eigenvalues of M−1C are those of M−1/2CM−1/2 and therefore real
and positive. From

M−1C = Im +M−1A−1
B ANA

T
NA
−T
B

it follows that σmin(M−1C) ≥ 1, so that the lower bound on the smallest eigenvalue established
by basis preconditioning is maintained. Furthermore∥∥M−1C

∥∥ = 1 +
∥∥M−1A−1

B ANA
T
NA
−T
B
∥∥

≤ 1 +
∥∥M−1

∥∥∥∥A−1
B ANA

T
NA
−T
B
∥∥

≤ 1 +
∥∥A−1
B ANA

T
NA
−T
B
∥∥ ,

26

where the last inequality holds because the eigenvalues of M are ≥ 1. Hence the maximum
eigenvalue of M−1C is bounded by that of the basis preconditioned system without the columns
from R.

The technique is attractive if separating a small number of “dense” columns leads to a
sparse tableau matrix, since then

∥∥A−1
B AN

∥∥
F

obtained by a maximum volume basis can be
much smaller than if the whole matrix A was used. Excluding dense columns may also lead to
faster linear algebra operations in the search for a basis. Prominent examples are LP matrices
with dual block angular structure, in which the constraint matrix becomes block diagonal after
removing a set of linking columns (see, for example, Lubin et al. [49]). In this case separating
AR also leads to a straightforward parallelization of the maximum volume algorithms from
Chapter 2.

The above method assumed that A remains of full row rank after dropping AR. Otherwise
a slight modification can be used. Let R = R0 ∪ R1, where R1 ⊆ R is a maximum subset of
columns that can be removed from A without loosing full row rank. Then the partitioning

A =
[
AB AN AR1

]
is used and M is built of columns in R1. The important observation is that columns in R0 ⊆ B
do not cause nonzero entries in A−1

B AN . For, if (A−1
B AN)pq 6= 0 for some Bp ∈ R0, then index

Nq could replace index Bp in the basis and Bp could be added to R1. This is in contradiction
to R1 ⊆ R being a maximum subset. Hence the rows of the tableau matrix corresponding to
columns in R0 are all zero.

The observation can be exploited further. After dropping AR1
from A, the columns of

AN are linearly dependent on AB\R0
for any basic-nonbasic partition. Therefore AR0 can be

replaced in the basis matrix by any “auxiliary” columns that keep the matrix nonsingular,
without affecting the search for a maximum volume basis. The obvious choice is to replace AR0

by unit columns to increase sparsity in the LU factorization. After a basis has been found, the
actual AB is factorized once in preparation for applying the preconditioner.

3.4 Error Control for Iterative Methods

A frequent question in practice is to what accuracy a linear system needs to be solved by an
iterative method. For least squares problems a meaningful termination criterion can be derived
from the transformed residual if basis preconditioning is used.

Assume that an iterative method computes an approximate solution to (3.5) that satisfies
Cu = B−1r + δ, and that a solution to the KKT system is recovered from

y = B−Tu, xN = cN −NTy, xB = B−1(b−NxN). (3.8)

By definition of x, a residual occurs only in the basic components of the first block equation in
(3.2). That residual is exactly δ because

xB +BTy = B−1(b−NxN) + u

= B−1b−B−1N(cN −NTB−Tu) + u

= Cu+B−1(b−NcN)

= B−1r + δ +B−1(b−NcN)

= cB + δ.

For a least squares problem the relevant quantity for the accuracy of the solution is the
relative error in the objective, (‖x‖ − ‖x∗‖)/ ‖x∗‖, where (x∗,y∗) denotes the exact solution

27

to the KKT system. From I BT

I NT

B N 0

 xB − x∗BxN − x∗N
y − y∗

 =

δ0
0

 (3.9)

it follows that x−x∗ is the projection of (δ,0) onto the null space of A and therefore ‖x− x∗‖ ≤
‖δ‖. Now assume that ‖δ‖ ≤ ε ‖x‖ for some ε ∈ (0, 1). Using the expression obtained from the
triangle inequality,

‖x∗‖ = ‖x− (x− x∗)‖ ≥ ‖x‖ − ‖x− x∗‖ ≥ ‖x‖ − ‖δ‖ ,

it follows that

‖x‖ − ‖x∗‖
‖x∗‖

≤ ‖x− x
∗‖

‖x∗‖
≤ ‖δ‖
‖x‖ − ‖δ‖

≤ ‖δ‖
1/ε ‖δ‖ − ‖δ‖

=
ε

1− ε
. (3.10)

Hence the criterion ‖δ‖ ≤ ε ‖x‖ controls the relative error in x and ‖x‖. Because ε/(1− ε) ≈ ε
for ε � 1, ‖δ‖ needs to be k orders of magnitude smaller than ‖x‖ to obtain k-digit accuracy
in the least squares objective and the least squares residual. The criterion might seem unusual
by involving the approximate solution to the KKT system rather than the right-hand side, but
it is implementable since x is either available in the iterative method or can be computed at
reasonable cost. Notice that the derivation of (3.10) required that the approximate solution
x satisfied Ax = b, which is why we had to choose xB = B−1(b − NxN) in (3.8) and not
xB = cB −BTy.

In practice some care must be taken to handle the case ‖x∗‖ ≈ 0 (or even ‖x∗‖ = 0), in
which the overdetermined system ATy = c is (close-to) consistent. Because the solution to a
consistent system is y = B−T cB for any basis, the criterion

∥∥cN −NTB−T cB
∥∥
∞ ≤ εabs can

be used to test for that case prior to starting the iterative solver.

3.5 Rank Deficient Matrices

When A has rank less than m, the least squares solution to ATy = c is no longer unique. A
slight modification of the basis preconditioning approach allows to compute one specific solution:
As for the rank revealing method from Section 2.4 we determine a maximum volume basis for[
A βIm

]
for a small β > 0. The set of logical columns in the basis defines a partitioning of

A into

[
A11 A12

A21 A22

]
, where A11 is nonsingular and its dimension is the numerical rank r of A.

Let c = (c1, c2) and y = (y1,y2) be partitioned accordingly. After removing the second block
row from A, the remaining system defines a full-rank least squares problem with unknowns
y1. Because A11 has maximum volume in its block row, a basis preconditioner for solving the
reduced problem is readily available. A solution to the original problem is then obtained by
setting y2 = 0.

The sketched procedure is, of course, well known and comes naturally with basis precondi-
tioning. In some applications it is desired to obtain the least squares solution y∗ of minimum
norm. It will be shown that y∗1 differs from the above y1 by a rank m − r correction and can
be computed by the same approach.

Let U and V be defined by

A

[
−A−1

11 A12

In−r

]
︸ ︷︷ ︸

=:U

= 0, AT
[
−A−T11 A

T
21

Im−r

]
︸ ︷︷ ︸

=:V

= 0,

28

so that their columns span the respective null spaces of A and AT . It follows from [9, Section 5.6,
Corollary 7] that y∗ are the solution components to[

AT U
V T 0

](
y∗

λ∗

)
=

(
c
0

)
.

Substituting the expressions for U and V yields AT11 AT21 −A−1
11 A12

AT12 AT22 In−r
−A21A

−1
11 Im−r 0

y∗1y∗2
λ∗

 =

c1

c2

0

 . (3.11)

The lower right 2× 2 block is nonsingular and pivoting on it reduces (3.11) to(
AT11 −

[
AT21 −A−1

11 A12

] [0 Im−r
In−r −AT22

] [
AT12

−A21A
−1
11

])
y∗1 =

c1 −
[
AT21 −A−1

11 A12

] [0 Im−r
In−r −AT22

](
c2

0

)
.

Denoting the Schur complement matrix by S and evaluating the right-hand side yields

Sy∗1 = c1 +A−1
11 A12c2.

After solving the Schur complement system, the remaining components of y∗ are obtained from
the last block equation in (3.11) as y∗2 = A21A

−1
11 y

∗
1.

The linear system with S can be further decomposed by writing S in product form:

S = AT11 +AT21A21A
−1
11 +A−1

11 A12A
T
12 +A−1

11 A12A
T
22A21A

−1
11

= AT11 +AT21A21A
−1
11 +A−1

11 A12A
T
12 +A−1

11 A12(AT12A
−T
11 A

T
21)A21A

−1
11

=
(
AT11 +A−1

11 A12A
T
12

)
+
(
AT21A21A

−1
11 +A−1

11 A12A
T
12A

−T
11 A

T
21A21A

−1
11

)
= A−1

11

(
A11A

T
11 +A12A

T
12

)
+A−1

11

(
A11A

T
11 +A12A

T
12

)
A−T11 A

T
21A21A

−1
11

= A−1
11

(
A11A

T
11 +A12A

T
12

)(
Ir +A−T11 A

T
21A21A

−1
11

)
,

where the second line used that A22 −A21A
−1
11 A12 = 0 when A has rank r. (Here A is required

to be truly rank deficient.) Computing y∗1 now proceeds in two stages,

(A11A
T
11 +A12A

T
12)y1 = A11c1 +A12c2, (3.12a)

(Ir +A−T11 A
T
21A21A

−1
11)y∗1 = y1. (3.12b)

The first stage computes the specific least squares solution to ATy = c that corresponds to
y2 = 0. The second stage applies a correction of rank at most m− r to y1 to obtain the least
squares solution of minimum norm.

The above form is computationally interesting becausem−r will often be small in practice, so
that the second stage can be obtained inexpensively through the Sherman-Morrison-Woodbury
formula. The total cost for computing the minimum norm solution is then comparable to
solving an ordinary least squares problem. For sparse matrices this can be much faster than
computing a singular value decomposition or a complete orthogonal factorization of A.

29

The above form also yields a bound on ‖y‖ in terms of ‖y∗‖ by the assumption that A11

has local maximum volume in its block column; for

‖y‖ = ‖y1‖ ≤
∥∥Ir +A−T11 A

T
21A21A

−1
11

∥∥ ‖y∗1‖
≤ (1 +

∥∥A21A
−1
11

∥∥2

F
) ‖y∗1‖

≤ (1 +m(m− r)) ‖y∗1‖
≤ (1 +m(m− r)) ‖y∗‖ .

Combining this with the trivial inequality ‖y∗‖ ≤ ‖y‖, we obtain

‖y∗‖ ≤ ‖y‖ ≤ (1 +m(m− r)) ‖y∗‖ .

The bound seems to be rarely useful in practice, however, because m(m−r) can be in the same
order of magnitude as ‖y∗‖.

Addendum

The author discovered the product form of S while trying to write (3.11) into symmetric form
(which turned out not to be possible); he then found that (3.12a) and (3.12b) are obtained
directly from the Moore-Penrose inverse of a 2 × 2 partitioned matrix derived by Hung and
Markham [39].

30

4 Analysis of an Inexact Interior Point Method

For the theoretical part of this work, the linear programming (LP) problem is stated in standard
form of a primal-dual pair

minimize
x

cTx subject to Ax = b, x ≥ 0, (4.1a)

maximize
y,z

bTy subject to ATy + z = c, z ≥ 0, (4.1b)

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn are given. It can be assumed without loss of generality
that A has full row rank; otherwise, if rank(A) < rank(

[
A b

]
), then the equations Ax = b are

inconsistent, and if rank(A) = rank(
[
A b

]
), then m− rank(A) constraints are redundant and

can be removed. Checking for consistency and identifying redundant constraints can be done
by Gaussian elimination in O(m2n) time.

The LP problem (4.1) is said to be “primal feasible” if there exists an x satisfying Ax = b,
x ≥ 0, and “dual feasible” if there exists (y, z) such that ATy + z = c, z ≥ 0. If the problem
is primal and dual feasible, then it has at least one optimal solution (x∗,y∗, z∗) and each such
solution satisfies cTx∗ = bTy∗. For this and other results about linear programming the reader
is referred to [59, Chapter 13].

The simplex method and the interior point method (IPM) are the two commonly used
tools for solving LP problems in practice. While the simplex method identifies an optimal
vertex by moving along edges of the feasible region, the IPM generates iterates that lie in
the relative interior of the feasible region (assuming that it is non-empty) and that approach
the solution set in the limit. The theoretical development of IPMs dates back to the work of
Karmarkar [40] and has led to a range of algorithms that can be classified as “interior point
methods” in the broad sense; see Section “Background” in Wright [80, Chapter 2, pp. 40–
45] for a historical overview. The common feature of the evolved algorithms is that their
iteration count is bounded polynomially in n. The best known complexity result for computing
an ε-accurate solution (defined below) is O(

√
n ln(1/ε)) and is achieved, for example, by the

short-step path-following methods of Kojima et al. [45] and of Monteiro and Adler [56]. Path-
following methods keep the iterates in a certain neighbourhood of a central trajectory, which
connects the analytic center of the feasible region to the analytic center of the optimal face;
see Gonzaga [27] for an extensive discussion of such algorithms. Practical implementations of
IPMs are more closely related to long-step path-following methods, such as the algorithm of
Kojima et al. [46], which use a wider neighbourhood than the short-step methods. Although
their best known complexity bound is worse, namely O(n ln(1/ε)) in [46], they actually require
fewer iterations than short-step methods in practice.

In this chapter the convergence of an interior point method that works with inexactly com-
puted step directions is analysed. A “feasible” and an “infeasible” method are formulated and
are shown to retain the complexity bounds of their exact counterparts. The conditions on
the residuals in the linear systems are designed to be utilizable in practice as stopping crite-
rion for an iterative solver. The analysis is carried out in the potential reduction framework,
which leaves more flexibility for inexact directions than a path-following method. The work
was originally presented by the author in [69].

4.1 Background

Before stating the inexact interior point algorithms in the next section, a brief summary of the
main concepts of IPMs is given. A primal-dual IPM applied to (4.1) generates a sequence of
iterates

(
xk,yk, zk

)
with

(
xk, zk

)
> 0. We say that an iterate is an ε-approximate solution if

31

(xk)Tzk ≤ ε and ∥∥∥∥(Axk − b
ATyk + zk − c

)∥∥∥∥ ≤ ε

(x0)Tz0

∥∥∥∥(Ax0 − b
ATy0 + z0 − c

)∥∥∥∥ . (4.2)

Measuring the primal and dual residuals as a combined vector is justified because the considered
methods will decrease each component of Axk − b and ATyk + zk − c at the same rate.

Interior point methods compute the next iterate by taking a step along the Newton direction
for the nonlinear system

Ax = b, (4.3a)

ATy + z = c, (4.3b)

xizi = µ for 1 ≤ i ≤ n, (4.3c)

for some µ > 0. These equations along with (x, z) ≥ 0 express the optimality conditions for
(4.1) with the complementarity requirement xizi = 0 perturbed by µ. The Newton direction at
the iterate

(
xk,yk, zk

)
is the solution to the linear system A 0 0

0 AT I
Zk 0 Xk

∆x∗

∆y∗

∆z∗

 =

 b−Axk
c−ATyk − zk
−XkZke+ µe

 ,

where the convention is used that for any lower-case letter representing a vector in Rn (such
as x, zk), the corresponding upper-case letter (such as X, Zk) denotes the diagonal matrix
of dimension n with the vector components on the diagonal. Defining D = (Xk)1/2(Zk)−1/2,
W = (XkZk)1/2 and w = We, the Newton system can be written in the scaled quantities
∆u∗ = D−1∆x∗ and ∆v∗ = D∆z∗ asAD 0 0

0 DAT I
I 0 I

∆u∗

∆y∗

∆v∗

 =

 b−Axk
D(c−ATyk − zk)
−w + µW−1e

 =:

pq
r

 . (4.4)

Potential reduction methods are a subclass of IPMs that choose the step size at each iteration
to reduce a “potential function” by at least a certain value. The analysis presented below uses
the Tanabe-Todd-Ye potential function [75, 78]

φ(x, z) = (n+
√
n) ln(xTz)−

n∑
i=1

ln(xizi)− n ln(n).

By means of the following lemma, decreasing φ(xk, zk) toward −∞ forces xk and zk to become
complementary.

Lemma 4.1. φ(x, z) ≥
√
n ln(xTz) for all (x, z) > 0.

Proof. Given by Kojima et al. [47, Section 1].

4.2 Two Inexact Potential Reduction Methods

Instead of (∆u∗,∆y∗,∆v∗) the inexact methods work with step directions of the formAD 0 0
0 DAT I
I 0 I

∆u
∆y
∆v

 =

 p
q

r + ξ

 , (4.5)

32

where a residual ξ occurs in the scaled complementarity equations. The primal and dual
feasibility equations must be satisfied exactly. Let κ ∈ [0, 1) be a parameter that is chosen
independently of the problem dimension. The algorithms below make use of the following
conditions on the residual:

−rT ξ ≤ κ ‖r‖2 , (4.6a)

‖ξ‖ ≤ κmin(‖∆u‖ , ‖∆v‖), (4.6b)

−wT ξ ≤ κn/(n+
√
n) ‖w‖2 . (4.6c)

Algorithm 4 is the inexact version of the method analysed by Kojima et al. [47] for the
linear complementarity problem and formulated by Wright [80, Chapter 4] for the LP problem.
The method is called “feasible” because all iterates belong to the strictly feasible set

Fo =
{

(x,y, z) | Ax = b, ATy + z = c, (x, z) > 0
}
,

which is assumed to be non-empty. Algorithm 4 does not require condition (4.6c).

Algorithm 4 Feasible Potential Reduction Method
(adapted from Algorithm PR in Wright [80, Chapter 4, p. 67])

Input:
(
x0,y0, z0

)
∈ Fo, ε > 0.

1: Set δ = 0.15(1− κ)4 and k = 0.
2: If (xk)Tzk ≤ ε, then stop.
3: Let µ = (xk)Tzk/(n +

√
n). Compute a solution to (4.5) with residual ξ that satisfies

(4.6a)–(4.6b). Set ∆x = D∆u and ∆z = D−1∆v.
4: Find a step size αk such that

φ(xk + αk∆x, zk + αk∆z) ≤ φ(xk, zk)− δ. (4.7)

5: Set
(
xk+1,yk+1, zk+1

)
=
(
xk,yk, zk

)
+ αk (∆x,∆y,∆z), k = k + 1 and go to 2.

The following theorem, which is proved in Section 4.3, states that Algorithm 4 retains the
complexity bound of its exact counterpart (i. e. for κ = 0).

Theorem 4.2. Let
(
x0,y0, z0

)
∈ Fo and L ≥ 0 be such that φ(x0, z0) = O(

√
nL) and

ln(1/ε) = O(L). Then Algorithm 4 terminates in O(
√
nL) iterations.

Algorithm 5 is an “infeasible” inexact potential reduction method, as its iterates do not, in
general, belong to Fo. It extends Algorithm 1 from Mizuno et al. [55] to work with inexact
directions. Given positive parameters ρ and ε, it finds an ε-accurate approximation to a solution
(x∗,y∗, z∗) to (4.1), if it exists, such that ‖(x∗, z∗)‖∞ ≤ ρ.

The following theorem, which is proved in Section 4.4, states that Algorithm 5 retains the
complexity bound of its exact counterpart.

Theorem 4.3. Let L ≥ ln(n) be such that ln(ρ) = O(L) and ln(1/ε) = O(L). Then Algorithm 5
terminates in O(

√
n(n+

√
n)2L) iterations. If the algorithm stops in step 2, then the iterate is

an ε-approximate solution; otherwise it stops in step 4 proving that there is no optimal solution
(x∗,y∗, z∗) to (4.1) with ‖(x∗, z∗)‖∞ ≤ ρ.

When Algorithm 5 stops in step 4 and ρ is sufficiently large, then the LP problem must
be primal and/or dual infeasible. Todd [77] studied criteria to decide from the IPM iterates
which of (4.1a) and (4.1b) are infeasible. He showed exemplarily for the path-following method
of Kojima et al. [44] how the iterates generate a certificate of primal or dual infeasibility in

33

Algorithm 5 Infeasible Potential Reduction Method
(adapted from Algorithm 1 in Mizuno et al. [55])

Input: ρ > 0, ε > 0.
1: Set

(
x0,y0, z0

)
= ρ (e,0, e), δ = (1− κ)4/(800(n+

√
n)2) and k = 0.

2: If (xk)Tzk ≤ ε, then stop.
3: Let µ = (xk)Tzk/(n +

√
n). Compute a solution to (4.5) with residual ξ that satisfies

(4.6a)–(4.6c). Set ∆x = D∆u and ∆z = D−1∆v.
4: Find a step size αk such that

φ(xk + αk∆x, zk + αk∆z) ≤ φ(xk, zk)− δ, (4.8a)

(xk + αk∆x)T (zk + αk∆z) ≥ (1− αk)(xk)Tzk. (4.8b)

If no such step size exists, then stop.
5: Set

(
xk+1,yk+1, zk+1

)
=
(
xk,yk, zk

)
+ αk (∆x,∆y,∆z), k = k + 1 and go to 2.

the limit (see Section 5.2 in [77]). Todd’s theory is based on a generic IPM formulation which
includes Algorithm 5 with κ = 0. If the results also hold for the inexact method (i. e. κ > 0)
has not been investigated for the present work.

The following lemma is needed for the convergence analysis of the inexact potential reduction
methods. It uses the particular form of the scaled Newton system to prove that condition (4.6b)
bounds the relative error in the inexact solution.

Lemma 4.4. Given solutions to (4.4) and (4.5), suppose that (4.6b) holds for κ ∈ [0, 1). Then

‖∆u−∆u∗‖ ≤ κ/(1− κ) ‖∆u∗‖ ,
‖∆v −∆v∗‖ ≤ κ/(1− κ) ‖∆v∗‖ .

Proof. Let P = DAT (AD2AT)−1AD. The solution to (4.4) is

∆u∗ = DAT (AD2AT)−1p− (I − P)q + (I − P)r,

∆y∗ = (AD2AT)−1(p+ADq −ADr),

∆v∗ = −DAT (AD2AT)−1p+ (I − P)q + Pr.

It follows that

∆u−∆u∗ = (I − P)ξ,

∆v −∆v∗ = Pξ.

Because P and I − P are projection operators, ‖P‖ ≤ 1 and ‖I − P‖ ≤ 1. Therefore the
absolute errors are bounded by the norm of the residual,

‖∆u−∆u∗‖ ≤ ‖ξ‖ ,
‖∆v −∆v∗‖ ≤ ‖ξ‖ .

On the other hand, it follows from the triangle inequality and (4.6b) that

‖∆u∗‖ = ‖∆u− (I − P)ξ‖ ≥ ‖∆u‖ − ‖ξ‖ ≥ (1− κ) ‖∆u‖ , (4.10a)

‖∆v∗‖ = ‖∆v − Pξ‖ ≥ ‖∆v‖ − ‖ξ‖ ≥ (1− κ) ‖∆v‖ . (4.10b)

Combining both inequalities and (4.6b) gives

‖∆u−∆u∗‖ ≤ ‖ξ‖ ≤ κ ‖∆u‖ ≤ κ/(1− κ) ‖∆u∗‖ ,
‖∆v −∆v∗‖ ≤ ‖ξ‖ ≤ κ ‖∆v‖ ≤ κ/(1− κ) ‖∆v∗‖

as claimed.

34

4.3 Proof of the Complexity Bound for the Feasible Method

Analysing Algorithm 4 requires two technical results from Mizuno et al. [55], which are stated
in the following two lemmas.

Lemma 4.5 ([55, Lemma 2]). Let x, z ∈ Rn>0, ∆x,∆z ∈ Rn, α > 0 and τ ∈ (0, 1) be such that∥∥αX−1∆x
∥∥
∞ ≤ τ and

∥∥αZ−1∆z
∥∥
∞ ≤ τ . Then

φ(x+ α∆x, z + α∆z) ≤ φ(x, z) + g1α+ g2α
2

with coefficients

g1 =

(
n+
√
n

xTz
e− (XZ)−1e

)T
(Z∆x+X∆z),

g2 = (n+
√
n)

∆xT∆z

xTz
+

∥∥X−1∆x
∥∥2

+
∥∥Z−1∆z

∥∥2

2(1− τ)
.

Lemma 4.6 ([55, Lemma 3]). Let w ∈ Rn>0 and wmin = mini wi. Then∥∥∥∥W−1e− n+
√
n

wTw
w

∥∥∥∥ ≥ √
3

2wmin
.

In the sequel let w = (XkZk)1/2e as defined earlier and wmin = mini wi. Applying
Lemma 4.6 to the vector r defined in (4.4) for µ = (xk)Tzk/(n+

√
n) yields

‖r‖ =
∥∥−w + µW−1e

∥∥ = µ

∥∥∥∥− 1

µ
w +W−1e

∥∥∥∥ ≥ µ √
3

2wmin
. (4.11)

Lemma 4.7. In iteration k of Algorithm 4 the potential reduction (4.7) is achieved by

α =
wmin
2 ‖r‖

(1− κ)3.

Proof. (adapted from Wright [80, Chapter 4]) From the first two block equations in (4.4) and
p = 0, q = 0 we have that

(∆u∗)T∆v∗ = −(∆u∗)TDAT∆y∗ = −(AD∆u∗)T∆y∗ = 0.

Therefore ‖∆u∗‖2 + ‖∆v∗‖2 = ‖r‖2. Combining this with (4.10) and the definition of α yields∥∥α(Xk)−1∆x
∥∥
∞ ≤ α

∥∥W−1
∥∥ ‖∆u‖ ≤ α

wmin

‖∆u∗‖
1− κ

≤ α

wmin

‖r‖
1− κ

≤ 1

2
,∥∥α(Zk)−1∆z

∥∥
∞ ≤ α

∥∥W−1
∥∥ ‖∆v‖ ≤ α

wmin

‖∆v∗‖
1− κ

≤ α

wmin

‖r‖
1− κ

≤ 1

2
.

Hence τ = 1/2 satisfies the assumptions of Lemma 4.5, so that

∆φ := φ(xk + α∆x, zk + α∆z)− φ(xk, zk) ≤ g1α+ g2α
2 (4.12)

with coefficients

g1 =

(
n+
√
n

wTw
e−W−2e

)T
W (∆u+ ∆v),

g2 =
∥∥W−1∆u

∥∥2
+
∥∥W−1∆v

∥∥2
.

35

(The first term of g2 from Lemma 4.5 vanishes because ∆xT∆z = 0 by the same argument as
above.)

To show that φ is sufficiently reduced along the direction (∆x,∆z) we need to show that
g1 is negative and bounded away from zero, while g2 is bounded. From the definition of r and
condition (4.6a) we have

g1 =

(
n+
√
n

wTw
w −W−1e

)T
(∆u+ ∆v) = −n+

√
n

wTw
rT (r + ξ) (4.13)

≤ −(1− κ)
n+
√
n

wTw
‖r‖2 . (4.14)

For the second order term it follows from (4.10) that

g2 =
∥∥W−1∆u

∥∥2
+
∥∥W−1∆v

∥∥2 ≤ 1

w2
min

(
‖∆u‖2 + ‖∆v‖2

)
≤ ‖∆u

∗‖2 + ‖∆v∗‖2

w2
min(1− κ)2

=
‖r‖2

w2
min(1− κ)2

.

Inserting the bounds on g1 and g2 into (4.12) and using the definition of α gives

∆φ ≤ −(1− κ)
n+
√
n

wTw
‖r‖2 α+

‖r‖2

w2
min(1− κ)2

α2

= −(1− κ)4n+
√
n

wTw

wmin
2
‖r‖+

(1− κ)4

4
.

Finally, using the bound on ‖r‖ from (4.11) yields

∆φ ≤ (1− κ)4

(
−
√

3

4
+

1

4

)
≤ −0.15(1− κ)4 = −δ.

Proof of Theorem 4.2. Let K ≥ 0 be the smallest index such that φ(xK , zK) ≤
√
n ln(ε). From

Lemma 4.1 we then have
√
n ln

(
(xK)TzK

)
≤ φ(xK , zK) ≤

√
n ln(ε),

so that Algorithm 4 terminates at the latest in iteration K. Because each iteration of the
algorithm reduces φ(xk, zk) by at least δ, we have K ≤ d(φ(x0, z0) −

√
n ln(ε))/δe. It follows

from φ(x0, z0) = O(
√
nL) and ln(1/ε) = O(L) that K = O(

√
nL) as claimed.

4.4 Proof of the Complexity Bound for the Infeasible Method

The analysis of Algorithm 5 is based on the work of Mizuno et al. [55]. Let the sequence {θk}
be defined by

θ0 = 1, θk+1 = (1− αk)θk for k ≥ 0.

Because of the form of the step directions we have(
Axk − b, ATyk + zk − c

)
= θk

(
Ax0 − b, ATy0 + z0 − c

)
, (4.15)

and because of the step size restriction (4.8b) we have

(xk)Tzk ≥ θk(x0)Tz0. (4.16)

The following lemma is obtained by setting γ0 = 1 and γ1 = 1 in [55, Lemma 4].

36

Lemma 4.8. Let ρ > 0 and suppose that(
x0,y0, z0

)
= ρ (e,0, e) ,(

Axk − b, ATyk + zk − c
)

= θk
(
Ax0 − b, ATy0 + z0 − c

)
,

(xk)Tzk ≥ θk(x0)Tz0. (4.17)

If there exists a solution (x∗,y∗, z∗) to (4.1) with ‖(x∗, z∗)‖∞ ≤ ρ, then the solution to (4.4)
at
(
xk,yk, zk

)
satisfies

max(‖∆u∗‖ , ‖∆v∗‖) ≤ 5(xk)Tzk

wmin
.

We can now prove that Algorithm 5 finds the required step sizes when the LP problem has
an optimal solution.

Lemma 4.9. If there exists an optimal solution (x∗,y∗, z∗) to (4.1) with ‖(x∗, z∗)‖∞ ≤ ρ,
then (4.8a) and (4.8b) hold for

α =
(1− κ)3w2

min

200(n+
√
n)(xk)Tzk

.

Proof. It is easily seen that by (4.8b) and the definition of
(
x0, z0

)
the assumptions of Lemma 4.8

are satisfied. Combining the lemma with (4.10) yields

max(‖∆u‖ , ‖∆v‖) ≤ 5(xk)Tzk

(1− κ)wmin
. (4.18)

It follows that∥∥α(Xk)−1∆x
∥∥ ≤ α ∥∥W−1

∥∥ ‖∆u‖ ≤ α 5(xk)Tzk

(1− κ)w2
min

=
(1− κ)2

40(n+
√
n)
≤ 1

40
,

∥∥α(Zk)−1∆z
∥∥ ≤ α ∥∥W−1

∥∥ ‖∆v‖ ≤ α 5(xk)Tzk

(1− κ)w2
min

=
(1− κ)2

40(n+
√
n)
≤ 1

40
.

Hence τ = 1/40 satisfies the assumptions of Lemma 4.5, so that

∆φ := φ(xk + α∆x, zk + α∆z)− φ(xk, zk) ≤ g1α+ g2α
2

with coefficients

g1 =

(
n+
√
n

wTw
e−W−2e

)T
W (∆u+ ∆v),

g2 =

(
(n+

√
n)

∆uT∆v

wTw
+

∥∥W−1∆u
∥∥2

+
∥∥W−1∆v

∥∥2

2(1− τ)

)
.

It will be shown that g1 is negative and bounded away from zero, while g2 is bounded.
Combining (4.14), (4.11) and the definition of µ gives

g1 ≤ −(1− κ)
1

µ
‖r‖2 ≤ −(1− κ)µ

3

4w2
min

= −(1− κ)
wTw

n+
√
n

3

4w2
min

.

Next, from (4.18) we have

|∆uT∆v| ≤ ‖∆u‖ ‖∆v‖ ≤
(

5wTw

(1− κ)wmin

)2

(4.19)

37

and therefore

(n+
√
n)

∆uT∆v

wTw
≤ n+

√
n

wTw

(
5wTw

(1− κ)wmin

)2

≤ n+
√
n

n

(
5wTw

(1− κ)w2
min

)2

, (4.20)

where the last inequality was obtained by multiplying with wTw/(nw2
min) ≥ 1. Furthermore,

(4.18) also implies that∥∥W−1∆u
∥∥2

+
∥∥W−1∆v

∥∥2

2(1− τ)
≤ 1

1− τ

(
5wTw

(1− κ)w2
min

)2

. (4.21)

Summing up (4.20) and (4.21) gives

g2 ≤
(
n+
√
n

n
+

1

1− τ

)(
5wTw

(1− κ)w2
min

)2

≤ 4

(
5wTw

(1− κ)w2
min

)2

.

Inserting g1, g2 and the definition of α into the quadratic form yields

∆φ ≤ −(1− κ)
wTw

n+
√
n

3

4w2
min

α+ 4

(
5wTw

(1− κ)w2
min

)2

α2

=
(1− κ)4

(n+
√
n)2

(
− 3

4 · 200
+ 4

(
5

200

)2
)

= −δ.

Hence α satisfies (4.8a).
To verify that α satisfies (4.8b), a straightforward calculation yields

∆zTxk + ∆xTzk = ∆vTw + ∆uTw = wT (r + ξ) =

(
n

n+
√
n
− 1

)
wTw +wT ξ

and consequently

(xk + α∆x)T (zk + α∆z) = (xk)Tzk + α(∆zTxk + ∆xTzk) + α2∆xT∆z

= (1− α)wTw + α

(
n

n+
√
n
wTw +wT ξ + α∆uT∆v

)
.

By (4.19) and (4.6c) the term in parenthesis satisfies

n

n+
√
n
wTw +wT ξ + α∆uT∆v ≥ (1− κ)n

n+
√
n
wTw − α

(
5wTw

(1− κ)wmin

)2

=
(1− κ)wTw

n+
√
n

(
n− 1

8

)
> 0.

Therefore α satisfies (4.8b), which completes the proof.

Proof of Theorem 4.3. The theorem follows from the previous lemma by the same argumenta-
tion as in [55]. By definition of x0 and z0 we have

φ(x0, z0) = (n+
√
n) ln(nρ2)−

n∑
i=1

ln(ρ2)− n ln(n) =
√
n ln(nρ2) =

√
n(ln(n) + 2 ln(ρ)).

Under the hypothesis of the theorem φ(x0, z0) = O(
√
nL) and ln(1/ε) = O(L). Because

φ(xk, zk) ≥
√
n ln((xk)Tzk) and the potential function decreases by at least δ in each iteration,

38

Algorithm 5 terminates in O(
√
nL/δ) = O(

√
n(n +

√
n)2L) iterations. When the algorithm

stops in step 2, then (xk)Tzk ≤ ε and because of (4.15) and (4.16)∥∥∥∥(Axk − b
ATyk + zk − c

)∥∥∥∥ = θk
∥∥∥∥(Ax0 − b
ATy0 + z0 − c

)∥∥∥∥ ≤ ε

(x0)Tz0

∥∥∥∥(Ax0 − b
ATy0 + z0 − c

)∥∥∥∥ .
Hence (4.2) also holds. Therefore the final iterate is indeed an ε-approximate solution. On
the other hand, if there exists an optimal solution (x∗,y∗, z∗) to (4.1) with ‖(x∗, z∗)‖ ≤ ρ,
it follows from Lemma 4.9 that a step size satisfying (4.8a) and (4.8b) exists. Hence, if the
algorithm stops in step 4, then there are no such solutions.

4.5 Discussion

The analysis gave some insights into the conditions (4.6a)–(4.6c). From (4.13) it is seen that

(∆x,∆z) is a descent direction for φ if and only if −rT ξ < ‖r‖2. A condition of the form
(4.6a) is therefore required in a potential reduction method. (4.6b) bounds the curvature of φ
along (∆x,∆z). When the iterate is feasible, this condition can be replaced by ‖ξ‖ ≤ c ‖r‖ for
an arbitrary constant c, since then

‖∆u‖2 + ‖∆v‖2 = ‖r + ξ‖2 ≤ (1 + c)2 ‖r‖2

gives the required bound on g2 in Lemma 4.7 (α needs to be adjusted). For an infeasible iterate
(4.6b) is needed in its written form for bounding ‖∆u‖ and ‖∆v‖. (4.6c) guarantees that in
the infeasible algorithm the step size restriction (4.8b) can be satisfied.

The choice of α made in Lemma 4.7 and Lemma 4.9 guarantees to reduce φ by at least the
predefined value δ at each iteration, which yields the polynomial complexity bound. As pointed
out by one of the examiners, it prevents superlinear convergence, however. This is because∥∥α(Xk)−1∆x

∥∥
∞ and

∥∥α(Zk)−1∆z
∥∥
∞ are bounded by τ < 1, so that if xkj → 0, then

xk+1
j

xkj
=
xkj + α∆xj

xkj
= 1 + α

(
xkj
)−1

∆xj ≥ 1− τ,

and similarly if zkj → 0. Hence the convergence rate is only linear. A necessary condition

for superlinear convergence is to have τ → 1 so that xk+1
j /xkj can approach zero. Whether

superlinear convergence is achieved by a less conservative choice of α has not been answered by
the analysis.

Inexact directions of the form (4.5) have been analysed by Monteiro and O’Neil [57] and by
Al-Jeiroudi and Gondzio [3] for the long-step path-following method, which sets µ = σxTz/n,
where σ ∈ [0, 1], and chooses the step size to keep xizi ≥ γxTz/n for a constant γ ∈ (0, 1).
Both papers use a basic-nonbasic partitioning of the variables and assume that a residual occurs
only in the basic components of the complementarity equations; i. e. the residual in (4.5) takes
the form ξ = (ξB, ξN) = (ξB,0). Monteiro and O’Neil [57] use the condition

‖ξB‖ ≤
(1− γ)σ

4
√
n

√
xTz/n, (4.22)

whereas Al-Jeiroudi and Gondzio [3] require

‖WBξB‖∞ ≤ ηx
Tz/n (4.23)

with η < 1 depending on σ and γ. Notice that (4.23) measures the residual in the unscaled
complementarity equations. A similar condition was used by Gondzio [25] for a feasible long-
step path-following IPM for convex QP, requiring that

‖Wξ‖∞ ≤ δ ‖Wr‖∞ (4.24)

39

with δ < 1 depending on σ and γ. The issue with convergence analysis in the path-following
framework is that keeping the iterates within the central path neighbourhood limits the amount
of inexactness that can be tolerated. Indeed, (4.22) obviously becomes restrictive for large-scale
problems; the constant in (4.23) is constrained by at least η < 0.5 (see [3, Section 4]); and a
possible choice for δ in (4.24) is given in [25, Section 3.2] as 0.05.

The obvious question regarding practicality is why not allowing residuals in the primal and
dual feasibility equations. The condition A∆x = b− Axk is a significant restriction to the set
of available solution methods because it typically requires a basis matrix of A to be realized.
Mizuno and Jarre [54] considered an inexact path-following IPM that allowed residuals in the
feasibility rather than the complementarity equations. Their analysis showed that the residuals
must be measured in a norm depending on A that is not accessible in practice. It therefore
seems unlikely that a practical algorithm with a theoretical foundation can be derived.

Having the residuals in the complementarity equations is also more natural from the stand-
point of Newton’s method, which linearizes the perturbed optimality conditions (4.3) at the
current iterate. Because a linearization error µ− (xi + ∆xi)(zi + ∆zi) occurs in the nonlinear
part of the system, there seems to be no reason for solving the corresponding step equations
exactly. As long as the computation error does not dominate the linearization error, Newton’s
method converges.

The analysis presented in the present work suggests to measure the residual from an iterative
linear solver in the scaled complementarity equations ∆u+ ∆v = r, because then the error in
the scaled step directions ∆u and ∆v remains bounded even for weak tolerances (Lemma 4.4).
Boundedness of ‖∆u‖ and ‖∆v‖ in terms of xTz/wmin (potential reduction method, see (4.18))
or
√
xTz/n (path-following method, see Wright [80, Chapter 6]) is key to the convergence of the

IPM. Because implementations are typically related to path-following methods, the criterion
‖ξ‖ ≤ κ

√
xTz/n is preferable. The latter is used with the infinity norm in the author’s LP

code.

40

5 Basis Matrices in the Interior Point Method

Basis matrices will be used in three components of the LP solver presented in Chapter 6:
preconditioning, crossover and for the dynamic elimination of variables. This chapter covers
the theoretical background for the computational techniques.

The LP problem is stated in standard form of a primal-dual pair

minimize
x

cTx subject to Ax = b, x ≥ 0, (5.1a)

maximize
y,z

bTy subject to ATy + z = c, z ≥ 0, (5.1b)

where A is an m× n matrix of full row rank. A basis B defines a “vertex solution” (x̂, ŷ, ẑ) to
the primal and dual equations by setting x̂N = 0 and ẑB = 0. The vertex is primal feasible if
x̂B = A−1

B b ≥ 0 and dual feasible if ẑN = cN − ATN ŷ ≥ 0, where ŷ = A−TB cB. A basis is said
to be “optimal” if its vertex is primal and dual feasible.

5.1 Background

Throughout the chapter it is assumed that a strictly feasible primal-dual point exists, i. e. a
point (x,y, z) satisfying

Ax = b, ATy + z = c, (x, z) > 0.

The existence of such a point is a sufficient condition for (5.1a) and (5.1b) to have optimal
solutions. In this case, the Goldman-Tucker theorem [22] states that there exists at least one
strictly complementary solution; i. e. an optimal solution for which exactly one of xi and zi is
positive for 1 ≤ i ≤ n. The following two properties of strictly complementary solutions will be
used repeatedly in the remainder of this chapter.

Lemma 5.1. (i) The partitioning into positive primal and positive dual variables is identical
for all strictly complementary solutions.

(ii) If (x∗,y∗, z∗) is a strictly complementary solution and (x,y, z) is an arbitrary solution,
then x∗i = 0 =⇒ xi = 0 and z∗i = 0 =⇒ zi = 0 for 1 ≤ i ≤ n.

Proof. For example in Wright [80, Chapter 2].

The existence of a strictly feasible primal-dual point also implies the existence of the central
path C (see [80, Theorem 2.8]), which is the set of points

(
xµ,yµ, zµ

)
parametrized by µ > 0

that satisfy

Axµ = b,

ATyµ + zµ = c,

(xµ, zµ) > 0,

(xµ)i(zµ)i = µ for 1 ≤ i ≤ n.

As µ → 0, the trajectory
(
xµ,yµ, zµ

)
converges to a strictly complementary solution to

(5.1). Each point in C defines a positive definite diagonal matrix Dµ = diag
(√

(xµ)i/(zµ)i

)
,

which will become important below. For a derivation of the properties of the central path see
Megiddo [51].

A path-following IPM solves (5.1) by generating a sequence of iterates
(
xk,yk, zk

)
that lie in

some vicinity of the central path while driving the complementarity measures µk =
(
xk
)T
zk/n

41

to zero. In each iteration a damped Newton step is taken toward the central point whose
complementarity measure is a factor σ ∈ [0, 1] times µk. Assuming that the current iterate is
feasible, the Newton direction is the solution to the linear system 0 AT I

A 0 0
Zk 0 Xk

∆x
∆y
∆z

 =

 0
0

−XkZke+ σµke

 .

After eliminating ∆z and scaling by Dk = diag
(
dk
)

, where dki =
√
xki /z

k
i , this system becomes

[
I DkAT

ADk 0

](
(Dk)−1∆x
−∆y

)
=

(
Dk
(
−zk + σµk

(
Xk
)−1

e
)

0

)
=:

(
Dkra

0

)
.

Therefore −∆y is the solution to the least squares problem

minimize
λ

∥∥DkATλ−Dkra
∥∥ . (5.3)

The matrix Dk is called “scaling matrix” in interior point terminology and usually attains
unfavourable numerical properties in advanced iterations. Because each limit point of the
iteration sequence of the IPM is a strictly complementary solution to (5.1) (see Wright [80,
Theorem 5.14] and Tapia et al. [76]), the diagonal entries of Dk either tend to zero or to
infinity. If the columns of A corresponding to large scaling factors have rank less than m, ADk

eventually approaches a rank deficient matrix and its condition number becomes unbounded.
But even if ADk remains of full rank, the wide spread of the scaling factors almost always
causes the least squares problem to become very ill conditioned in advanced iterations.

Definition 5.2. Let (x∗,y∗, z∗) be any strictly complementary solution to (5.1). Given any
basic-nonbasic partitioning (B,N) of the variables, we define the index sets

Bo = {i ∈ B | z∗i = 0}, B+ = {i ∈ B | z∗i > 0},
N o = {i ∈ N | x∗i = 0}, N+ = {i ∈ N | x∗i > 0},

and call the variables in N+ “primal superbasic” and the variables in B+ “dual superbasic”.
The basis B is said to have “maximum cardinality”2if

rank(ABo) = rank(ABo∪N+).

The definition of maximum cardinality says that B contains the maximum number of vari-
ables for which x∗i > 0. By means of Lemma 5.1(i) the definition of the index sets Bo, B+, N o

and N+ is independent of the particular choice of the strictly complementary solution.
In the following let π : B → {1, . . . ,m} be the mapping that assigns each basic variable i to

its position in B; i. e. Bπ(i) = i for all i ∈ B.

Lemma 5.3. B has maximum cardinality if and only if (A−1
B Aj)π(i) = 0 for all i ∈ B+ and all

j ∈ N+.

Proof. B has maximum cardinality

⇐⇒ rank(ABo) = rank(ABo∪N+)

⇐⇒ Each column in AN+ is linearly dependent on the columns in ABo .

⇐⇒ For each j ∈ N+ there exists a vector λ such that ABoλ = Aj .

⇐⇒ For each j ∈ N+ we have (A−1
B Aj)π(i) = 0 for all i ∈ B+.

2Because a basis always contains m indices, there should be no confusion with the cardinality of a set.

42

If B has maximum cardinality, |B+| and |N+| are said to be the number of primal and
dual degeneracies of the LP model. (Notice that a primal superbasic variable means a dual
degeneracy and vice versa.) By definition, LP degeneracy is a property of the problem data,
whereas the number of degenerate variables at a vertex (x̂, ŷ, ẑ), i. e. those i ∈ B for which
x̂i = 0 and those i ∈ N for which ẑi = 0, are a property of the basis.

Lemma 5.4. When the vertex (x̂, ŷ, ẑ) is optimal, then the number of primal and dual degen-
erate variables are lower bounded by the respective number of degeneracies of the LP problem.

Proof. Let (x∗,y∗, z∗) be any strictly complementary solution. By means of Lemma 5.1(ii) we
have x∗i = 0 =⇒ x̂i = 0 and z∗i = 0 =⇒ ẑi = 0. Hence, if B is a basis corresponding to the
vertex, then x̂B+ = 0 and ẑN+ = 0.

5.2 Comparison of Maximum Volume and Maximum Weight Bases

This section compares two criteria for choosing a basis matrix as preconditioner in the lin-
ear programming IPM. Consider the normal equations resulting from (5.3), A(Dk)2AT∆y =
−A(Dk)2ra, which are transformed by basis preconditioning into

C∆u := (ABD
k
B)−1A(Dk)2AT (ABD

k
B)−T∆u = −(ABD

k
B)−1A(Dk)2ra.

Al-Jeiroudi et al. [4] implemented an iterative linear solver with basis preconditioning in an
IPM. They motivated the idea by the fact that close to the solution of a nondegenerate LP model
exactly m scaling factors become large and the corresponding columns of A form a nonsingular
matrix. Hence A(Dk)2AT converges to AB(Dk

B)2ATB , where B is the unique optimal LP basis.
The obvious approach was building the basis from the first m linearly independent columns of
A in decreasing order of the scaling factors. Such a basis is said to have “maximum weight”.

Formally, a maximum weight basis for
(
A,dk

)
is defined through the following algorithm:

Algorithm 6 Maxweight (from Monteiro et al. [58, Section 2])

Input: A ∈ Rm×n of rank m, d ∈ Rn>0

1: Order the elements of d such that d1 ≥ · · · ≥ dn; order the columns of A accordingly.
2: Let B = ∅ and l = 1.
3: while |B| < m do
4: If Al is linearly independent of the columns in AB, set B = B ∪ {l}.
5: l = l + 1

Monteiro et al. [58] analysed the maximum weight basis preconditioner without assumptions
on the scaling matrix Dk. They proved that it bounds the condition number of C by mχ̄2

A,
where

χ̄A = max
B basis

{∥∥A−1
B A

∥∥} .
The key point in the proof of [58, Lemma 2.1] is that

|(Dk
B)−1A−1

B AND
k
N | ≤ |A−1

B AN | (5.4)

when B is a maximum weight basis for
(
A,dk

)
; i. e. scaling with (Dk

B)−1 and Dk
N does not

increase the entries in the tableau matrix. Consequently, a maximum weight basis bounds the
condition number of C independently of Dk. The bound is not of much use in practice, however,
because χ̄A may grow exponentially with the dimension of A (see the example in Section 3.1).

43

A stronger bound is obtained if B is chosen instead such that ABDk
B has ρ-maximum vol-

ume in ADk for some ρ ≥ 1. The defining property of a maximum volume basis is that∥∥(Dk
B)−1A−1

B ANDk
N
∥∥

max
≤ ρ, which yields the bound cond(C) ≤ 1 + ρ2m(n −m) derived in

Section 3.1. The maximum volume basis directly bounds the entries in the scaled tableau ma-
trix, whereas the maximum weight basis only guarantees (5.4), yielding a bound that depends
on χ̄A.

The following lemma shows that a maximum weight basis for
(
A,dk

)
and a maximum

volume basis for ADk have maximum cardinality when the scaling factors correspond to a
sufficiently late iterate of a path-following method.

Lemma 5.5. Let (x∗,y∗, z∗) be a strictly complementary solution to (5.1) and I ∪ J =

{1, . . . , n} be the partitioning of variables such that x∗I > 0 and x∗J = 0. Let
(
dk
)
k∈N

be

a sequence of vectors dk ∈ Rn>0 for which dkI →∞ and dkJ → 0 as k →∞. Then there exists
k̄ ∈ N such that the following holds true for all k ≥ k̄:

(i) Any maximum weight basis for
(
A,dk

)
has maximum cardinality.

(ii) Any maximum volume basis for ADk has maximum cardinality.

Proof. For part (i) choose k̄ ∈ N large enough such that maxj∈J dkj < mini∈I dki for all k ≥ k̄.

Any maximum weight basis for
(
A,dk

)
then contains the maximum number of variables from

I, and therefore has maximum cardinality.
For part (ii) let

σ := min
B basis

{
min
p,q

{
α | α = |A−1

B AN |pq, α 6= 0
}}

and choose k̄ ∈ N large enough such that

min
j∈J

{
(dkj)−1

}
· σ ·min

i∈I

{
dki
}
> 1 (5.5)

for all k ≥ k̄. Now let B be a maximum volume basis for ADk, where k ≥ k̄. Consider any
j ∈ B+ and i ∈ N+, and let p and q be such that j = Bp and i = Nq. Because of the maximum
volume property we have

(dkj)−1|A−1
B AN |pq dki = |(Dk

B)−1A−1
B AND

k
N |pq ≤ 1.

It follows from (5.5), B+ ⊆ J and N+ ⊆ I that (A−1
B AN)pq = 0. By Lemma 5.3 B has

maximum cardinality.
To complete the proof of the lemma, choose k̄ as the maximum of the values constructed

for part (i) and part (ii).

It follows from the lemma that if dk corresponds to a sufficiently late IPM iterate and B is

a maximum weight basis for
(
A,dk

)
, then the scaled tableau matrix can be partitioned as

(Dk
B)−1A−1

B AND
k
N =

N o N+[]
Bo → 0 O(χ̄A)
B+ O(χ̄A) 0

. (5.6)

Because the off-diagonal blocks may contain large entries, the matrix is likely to have a wide
spectrum unless the number of degeneracies of the LP problem is small. In practice LP models

44

are often highly degenerate, meaning that |B+| and |N+| are of order m and n−m, respectively;
see Achterberg [1] for a statistic on LP models from combinatorial optimization. But even on a
nondegenerate problem the effectiveness of the preconditioner is only guaranteed asymptotically
and may not be observed until very late in the interior point solve.

For the maximum volume basis, the scaled tableau matrix at a sufficiently late IPM iterate
can also be partitioned as in (5.6), but now the entries in the off-diagonal blocks are ≤ ρ in
absolute value. This leads to the asymptotic bound

cond(C) ≤ 1 + ρ2
(
|B+||N o|+ |Bo||N+|

)
because there are at most |B+||N o| + |Bo||N+| entries in the scaled tableau matrix which do
not tend to zero.

A further advantage of the maximum volume criterion is to be invariant to a column scaling.
Let R ∈ Rm×m and S ∈ Rn×n be positive definite diagonal matrices and consider the LP
problem with Ã = RAS, b̃ = Rb and c̃ = Sc instead of A, b and c. Then the central path C is
scaled to C̃ by (

xµ,yµ, zµ
)
∈ C =⇒

(
S−1xµ, R

−1yµ, Szµ
)
∈ C̃

and the scaling matrix at the central point corresponding to the same µ becomes D̃µ = DµS
−1.

Hence the scaled tableau matrix

(D̃µ)−1
B Ã−1

B ÃN (D̃µ)N = SB(Dµ)−1
B S−1

B A−1
B R−1RANSN (Dµ)NS

−1
N = (Dµ)−1

B A−1
B AN (Dµ)N

remains unchanged, and so does the maximum volume property of B.
The maximum weight basis is invariant to a row scaling only. Consider the point on the

central path for a fixed µ and its associated scaling matrix Dµ. Given any basis B, we can scale
the columns of A and thereby the central path such that (Dµ)B become the m largest entries of
Dµ. Hence a scaling operation can transform any basis into a maximum weight basis, despite
the fact that the relevant matrices (Dµ)−1

B A−1
B AN (Dµ)N remain unchanged for all B.

The scaling property does not play a role for totally unimodular matrices, which intrinsically
have a “correct” column scaling. If A is totally unimodular, the tableau matrices only have
entries ±1 and 0, so that maximum volume and maximum weight are the same property. For
the special case of the node-arc incidence matrix of a directed graph Monteiro et al. [58] already
derived the stronger bound on the condition number of C.

It might seem a disadvantage of the maximum volume criterion that finding such a basis
requires an iterative update procedure, whereas a maximum weight basis can be determined
by a variant of LU factorization. This is hardly relevant in practice, however, as we will
see that a good approximation to a maximum volume basis can be obtained efficiently in
the IPM. Furthermore, the maximum weight criterion assumes that linear dependency is a
strictly combinatorial notion and it is unlikely that such a method can be implemented robustly
while maintaining its theoretical properties. In contrast, the maximum volume algorithm from
Chapter 2 was straightforwardly translated into a numerically stable computer program.

Another criterion for basis selection was used by Oliveira and Sorensen [62], who composed
the basis matrix of the first m linearly independent columns of A, after ordering the columns
by decreasing 1-norm of Ajdj . They justified this choice to be an “inexpensive heuristic” for
minimizing

∥∥D−1
B A−1

B ANDN
∥∥ (see [62, Section 4.3]). Regarding the scaling property of the

central path discussed above, the 1-norm criterion is invariant to column scaling (because ADµ

remains unchanged), but in general not invariant to row scaling. It also gives no useful bound

45

on
∥∥D−1
B A−1

B ANDN
∥∥, as seen by adapting the example from Section 3.1 to

A =

1 −1 · · · −1 1

1 −1 1
. . .

...
...

1 −1 1
1 1

 , D =

1

1
2

. . .
1
m

1
m

 ,

where A has dimension m × (m + 1). Because the 1-norm of each column of AD is 1, the
criterion allows to choose the first m columns as basis, resulting in

∥∥D−1
B A−1

B ANDN
∥∥ to grow

proportionally to 2m/m.

5.3 Comparison of Maximum Volume and Optimal Bases

Intuitively one might expect that a maximum volume basis for ADµ would eventually become
an optimal LP basis if we follow the central path toward µ = 0. While this is obviously
true for a nondegenerate problem, the conjecture will turn out to be false in general. The
following analysis reveals the common features and the differences between the two types of
bases. Throughout, we consider points (x,y, z) on the central path with complementarity
measure µ = xTz/n and scaling matrix D = Dµ. For such a point and any basis B the scaled
tableau matrix can be expressed alternatively as

D−1
B A−1

B ANDN =
1
√
µ
D−1
B A−1

B ANDN
√
µ = X−1

B A−1
B ANXN ,

D−1
B A−1

B ANDN =
√
µD−1
B A−1

B ANDN
1
√
µ

= ZBA
−1
B ANZ

−1
N .

The following lemma provides a connection between any point on the central path and the
vertex corresponding to any basis.

Lemma 5.6. Let (x,y, z) ∈ C, D = diag
(√

xi/zi

)
. Let B be a basis with vertex (x̂, ŷ, ẑ).

Then

(i) D−1
B A−1

B ANDNeN = X−1
B x̂B − eB,

(ii) eTBD
−1
B A−1

B ANDN = eTN − ẑ
T
NZ
−1
N ,

(iii)
∑
i∈B x̂i(xi)

−1 +
∑
j∈N ẑj(zj)

−1 = n.

Proof. Part (i) and (ii) are computed from

D−1
B A−1

B ANDNeN = X−1
B A−1

B ANXNeN

= X−1
B A−1

B ANxN

= X−1
B A−1

B (b−ABxB)

= X−1
B x̂B − eB,

eTBD
−1
B A−1

B ANDN = eTBZBA
−1
B ANZ

−1
N

= zTBA
−1
B ANZ

−1
N

= (cTBA
−1
B − y

T)ANZ
−1
N

= (cTBA
−1
B AN − cTN + zTN)Z−1

N

= eTN − ẑ
T
NZ
−1
N .

46

Part (iii) is obtained by setting equal the two expressions

eTBD
−1
B A−1

B ANDNeN
(i)
= eTBX

−1
B x̂B − eTBeB,

eTBD
−1
B A−1

B ANDNeN
(ii)
= eTNeN − ẑ

T
NZ
−1
N eN .

From part (i) and (ii) of the lemma the difference between a maximum volume basis and
an optimal basis can be illustrated in terms of the scaled tableau matrix. Let (x,y, z) ∈ C
and let (x̂, ŷ, ẑ) be the vertex corresponding to basis B. Because xB and zN are positive,
B is primal feasible if and only if X−1

B x̂B ≥ 0, and dual feasible if and only if Z−1
N ẑN ≥

0. By means of Lemma 5.6 (i) and (ii) this is equivalent to D−1
B A−1

B ANDNeN ≥ −eB and
eTBD

−1
B A−1

B ANDN ≤ eTN ; i. e. B is an optimal basis if and only if the row sums of the scaled
tableau matrix are bounded from below by -1 and the column sums are bounded from above by
1. In contrast, for a maximum volume basis each entry in the scaled tableau matrix is bounded
by 1 in absolute value.

It will be shown by example that a maximum volume basis need not become optimal and
that an optimal basis need not attain maximum volume if we follow the central path toward
µ = 0. Consider the linear program

min
x

0 s.t.

1 0 1
0 1 1
1 1 1
−1 −1 1

x =

δ
δ

3/2
−1/2

 , x ≥ 0

for δ = 4509
3275 ≈ 1.4, whose feasible region is illustrated in Figure 2 by treating x3, x4, x5 and

x6 as slack variables. Because the objective function is zero, the primal components of the
central path are constant. From the optimality conditions it can be computed analytically that
x1 = x2 = 0.54, x3 = x4 = δ − 0.54, x5 = 0.42 and x6 = 0.58. For any basis B the scaled
tableau matrix is the same for all central points.

The basis B = {2, 3, 5, 6} defining the vertex x̂ is optimal. Computing

X−1
B A−1

B A1x1 =

0

x1/x3

x1/x5

−x1/x6

and using that x5 < x1 shows that B does not have maximum volume. On the other hand, the
basis B′ = {2, 3, 4, 6} defining the vertex x̂′ is primal infeasible. Computing

X−1
B′ A

−1
B′ A1x1 =

x1/x2

x1/x3

−x1/x4

0

 , X−1
B′ A

−1
B′ A5x5 =

x5/x2

0
−x5/x4

x5/x6

and substituting the values for x verifies that B′ has maximum volume.

The example also proves that a maximum weight basis need not be optimal and that an
optimal basis need not have maximum weight. It is readily verified that B′ as defined above
and B′′ = {1, 3, 4, 6} are the only maximum weight bases for any point on the central path.
Their vertices x̂′ and x̂′′ are primal infeasible.

The common feature of maximum volume and maximum weight bases in the limit µ→ 0 is
maximum cardinality (Lemma 5.3). The same holds true for an optimal basis.

47

1
2

δ 3
2

x1

1
2

δ

3
2

x2

x3

x4

x5

x6

xµ

x̂

x̂′

x̂′′

Figure 2: Feasible region of example problem. Constraints are labelled by their slack variable.

Lemma 5.7. An optimal basis has maximum cardinality.

Proof. Let (x∗,y∗, z∗) be a strictly complementary solution to (5.1) and let B be an optimal
basis. We need to show that if i = Bp and j ∈ N are such that x∗i = 0 and x∗j > 0, then

(A−1
B Aj)p = 0.
We can assume without loss of generality that there exists exactly one j ∈ N for which

x∗j > 0. (Otherwise consider the LP problem obtained by fixing all primal superbasic variables
except j at their optimal solution value.) Let i = Bp be such that x∗i = 0. Because the vertex
(x̂, ŷ, ẑ) defined by B is optimal, we have x̂i = 0 by means of Lemma 5.1 (ii). Hence

0 = x̂i = (A−1
B b)p = (A−1

B Ax∗)p = x∗i + (A−1
B ANx

∗
N)p = 0 + (A−1

B Aj)p x
∗
j ,

so that (A−1
B Aj)p = 0.

Addendum

In [70] the author defined a basis B to be of “correct degeneracy” if its vertex (x̂, ŷ, ẑ) satisfies
x∗i = 0 =⇒ x̂i = 0 and z∗i = 0 =⇒ ẑi = 0 for a strictly complementary solution (x∗,y∗, z∗).
It was proved using Lemma 5.6(iii) that a maximum volume/weight basis attains correct de-
generacy in the limit µ → 0. During the writing up of the present work the author realized
that any basis of maximum cardinality also has correct degeneracy, so that the latter concept
provides no additional characterization of a maximum volume basis.

5.4 Crossover

Some LP applications require vertex solutions. The most prominent example is classical integer
programming, where cutting plane generation and reoptimization with the simplex method rely

48

on an optimal basis. Because the IPM converges to strictly complementary points, the obtained
solution is not a vertex if the LP problem is degenerate. IPMs are therefore supplemented by
a crossover procedure, which recovers an optimal basis through simplex-type iterations.

Megiddo [52] described a polynomial-time algorithm for constructing an optimal basis from
any primal-dual solution. Bixby and Saltzman [10] demonstrated how Megiddo’s method can
be formulated equivalently as primal and dual “push phases”. The push method additionally
requires a starting basis as input, which is transformed into an optimal one. This form of the
algorithm is commonly used in crossover implementations and is described in the following.

Let (x,y, z) be a primal-dual solution to (5.1) (not necessarily strictly complementary) and
B be a basis of maximum cardinality. Recall that variables j ∈ N for which xj 6= 0 and i ∈ B
for which zi 6= 0 are said to be primal superbasic and dual superbasic, respectively, and that
their index sets are denoted by N+ and B+.

The primal push phase manipulates x and B to remove primal superbasics:

[P1] If N+ = ∅, then stop. Otherwise choose j ∈ N+.

[P2] Let ∆xB = A−1
B Ajxj and 0 ≤ α ≤ 1 be maximum subject to xB + α∆xB ≥ 0. Set

xB = xB + α∆xB and xj = (1− α)xj . If α = 1, then go to [P1].

[P3] Choose i ∈ B for which xi = 0 and ∆xi < 0. (i is a blocking index.)

[P4] Replace i by j in the basis and go to [P1].

The dual push phase manipulates (y, z) and B to remove dual superbasics:

[D1] If B+ = ∅, then stop. Otherwise choose i ∈ B+ and let p be the position of i in B.

[D2] Let ∆y = A−TB epzi, ∆zN = −ATN∆y and 0 ≤ α ≤ 1 be maximum subject to zN +
α∆zN ≥ 0. Set y = y + α∆y, zN = zN + α∆zN and zi = (1− α)zi. If α = 1, then go
to [D1].

[D3] Choose j ∈ N for which zj = 0 and ∆zj < 0. (j is a blocking index.)

[D4] Replace i by j in the basis and go to [D1].

Lemma 5.8. Assume that (x,y, z) is an optimal solution to (5.1) and B a basis of maximum
cardinality. After executing the primal and dual push phases B is an optimal basis and (x,y, z)
its associated vertex.

Proof. Obviously each push maintains Ax = b, ATy + z = c and (x, z) ≥ 0. It is also clear
that each pivot operation maintains maximum cardinality of the basis.

We need to show that x and z remain complementary during the push operations. Assume
that in the primal phase xj is pushed toward zero for some j ∈ N+ and consider the update
to xB. If ∆xi 6= 0 for some i ∈ B, then (A−1

B Aj)π(i) 6= 0. Because B has maximum cardinality,
we then must have i /∈ B+ by Lemma 5.3 and it follows from Lemma 5.1(ii) that zi = 0. Hence
complementarity of x and z is maintained in [P2]. Complementarity is trivially maintained in
[D2] because now xN = 0. The argument is easily adjusted if the dual push phase is executed
first.

Because each iteration of the primal and dual push phases reduces the number of superbasic
variables by 1, the algorithm terminates after at most n −m primal and m dual pushes with
an optimal basis.

Notice that the number of push operations is determined from the beginning by the number
of superbasic variables, whereas the number of pivot operations may depend on the order in

49

which superbasics are processed. If the initial solution is strictly complementary, then the
number of pushes is the number of degeneracies of the LP model.

Implementing algorithms as the one above is prone to numerical instability. The problem
is that after choosing an xj to be moved to zero, there is no flexibility about which variable
leaves the basis unless a tie exists in [P3]. If the pivot element corresponding to the first
blocking variable is small, the new basis will be ill conditioned and severe round-off errors may
occur in subsequent computations. The same issue is well known from the simplex method,
where a two-pass ratio test that promotes larger pivot elements at the cost of accepting slight
infeasibilities is often used in practice [34]. The same technique can be used for implementing
the push method. Here, however, we can also gain more flexibility in the pivot choice by a
modification of the algorithm.

Observe that [P4] can be replaced by

[P4’] Let p be the position of i in B. Choose j′ ∈ N+ such that (A−1
B Aj′)p 6= 0. Replace i by

j′ in the basis and go to [P1].

That means, a blocking index i ∈ B can be replaced by any j′ ∈ N+ that keeps the basis
nonsingular. Because the number of superbasics still reduces by 1 in each iteration, the proof
of Lemma 5.8 remains valid. If the variable j that was pushed in [P1] is not exchanged, it
remains superbasic and will be pushed again in a subsequent iteration. The obvious method to
improve numerical stability is computing the tableau row corresponding to i ∈ B and choosing
the maximum absolute entry among all primal superbasics as pivot.

The analogue for the dual push phase is to replace [D4] by

[D4’] Choose i′ ∈ B+ such that (A−1
B Aj)p′ 6= 0, where p′ is the position of i′ in B. Replace i′

by j in the basis and go to [D1].

Here we may compute the tableau column corresponding to j ∈ N and choose the pivot as the
maximum absolute entry among all dual superbasics.

The cost for the modified push method is computing an additional tableau row or column
prior to a pivot operation. If the method is used for numerical stability, the extra cost can be
reduced by applying the technique only when the first choice of pivot element (i. e. the pivot in
[P4] or [D4]) is smaller than a threshold. The flexibility in the pivot choice can also be used to
keep the basis matrix as sparse as possible.

A crossover implementation is described in Section 6.8. In practice it must be taken into
account that the solution from an interior point method is neither exactly feasible nor comple-
mentary, and that linear dependency relies on numerical tolerances. This does not affect the
number of push operations, however, so that the complexity of the algorithm is maintained.

5.5 Fixing Primal and Dual Variables

To reduce the problem dimension and computation time, it seems appealing to drop columns
from A during an interior point solve as soon as primal variables are indicated to be at a bound
in the solution. The downside of the idea is that we would no longer obtain a dual solution to
the original problem. To illustrate, consider

minimize x1 + x2 − c3x3

subject to x1 + x2 + x3 = 1,

x1 − x4 = 1,

x ≥ 0,

50

where c3 is a parameter. The primal solution is unique with x = (1, 0, 0, 0). After dropping x3,
the reduced problem has the (unbounded) dual solution set

y1 ≤ 1, y2 = 1− y1, z1 = 0, z2 = z4 = y2.

For any dual solution of the reduced problem, z3 can be computed for the original problem from
z3 = −c3 − y1. Hence a dual solution of the reduced problem does not yield a dual solution
of the original problem when c3 > −y1. Because c3 is an arbitrary parameter which does not
affect the solution computed for the reduced problem, the example shows that in general we do
not obtain a dual solution after dropping variables.

Variables can be removed from the optimization process in a different manner, however,
founded by Lemmas 5.9 and 5.10.

Lemma 5.9. Let (x∗,y∗, z∗) be a strictly complementary solution to (5.1) and let B be a basis
of maximum cardinality. After fixing the primal superbasic variables N+ ⊆ N at x∗N+ and
solving the reduced problem, a solution to (5.1) is obtained by setting zN+ = 0.

Proof. Let R = {1, . . . , n} \ N+ be the indices of variables in the reduced problem and let
(x,y, z) be the primal-dual point obtained from the stated procedure. Obviously Ax = b,
ATRy + zR = cR, x ≥ 0, z ≥ 0 and xTz = 0. For (x,y, z) to be a solution to (5.1), we need
to prove that ATN+y = cN+ .

Let j ∈ N+ and v = A−1
B Aj . We claim that for each i ∈ B either zi = 0 or vπ(i) = 0; for if

zi > 0, then z∗i > 0 by Lemma 5.1(ii), so that vπ(i) = 0 by Lemma 5.3. Consequently vTzB = 0
and therefore

ATj y = ATj A
−T
B (cB − zB) = vT (cB − zB) = vT cB = ATj A

−T
B cB.

The same argument holds for (y∗, z∗) in place of (y, z). Hence ATj y = ATj A
−T
B cB = ATj y

∗.
Because j ∈ N+ we have z∗j = 0 so that ATj y = ATj y

∗ = cj .

Lemma 5.10. Let (x∗,y∗, z∗) be a strictly complementary solution to (5.1) and let B be a
basis of maximum cardinality. Define a modified LP problem by reducing cB+ to cB+ − z∗B+

for dual superbasic variables B+ ⊆ B and removing the lower bound on xB+ . From a solution
(x,y, z) to the modified problem, a solution to (5.1) is obtained by setting zB+ = z∗B+ .

Proof. Let (x,y, z) be the suggested solution to (5.1) obtained from the stated procedure.
Obviously Ax = b, ATy + z = c, xj ≥ 0 for j /∈ B+ and z ≥ 0. It remains to show that
xB+ = 0, which implies that xTz = 0.

Let i = Bp ∈ B+. Because B has maximum cardinality, for any j ∈ N such that x∗j > 0 we

have (A−1
B Aj)p = 0. Observe that xj > 0 =⇒ x∗j > 0 for j /∈ B+ because (x∗,y∗, z∗) yields

a strictly complementary solution to the modified problem by setting z∗B+ = 0. (Free variables
do not contribute to the notion of strict complementarity.) It follows that

xi = (A−1
B (b−ANxN))p = (A−1

B b)p.

The same argument holds for x∗ in place of x. Therefore xi = x∗i and because i ∈ B+,
xi = x∗i = 0.

The gist of Lemma 5.9 is that primal superbasic variables can be fixed at any value in the
interior of the solution set and be removed from the optimization. The gist of Lemma 5.10 is that
in the same way dual superbasic variables can be fixed by decreasing the objective coefficients
and removing the corresponding bounds from x. In both cases a primal-dual solution can be
recovered for the original problem.

51

Applying the lemmas in practice requires an optimal solution value for the variables to be
fixed. Obtaining such a value is not as unrealistic as it seems. When the basis has maximum
cardinality, the optimal solution for primal and dual superbasic variables is not unique. Let
[xj , xj] be the range of optimal solution values for j ∈ N+; i. e. for each ξ ∈ [xj , xj] there
exists an optimal LP solution with xj = ξ. Denote (x∗,y∗, z∗) the limit point of the central
path. Because (x∗,y∗, z∗) is the analytic center of the optimal face, we have xj < x∗j < xj .
Hence there exists a positive µ∗ such that xj is inside the optimal solution set for all central
points with complementarity measure ≤ µ∗. For the IPM it means that sufficiently late iterates
provide values at which superbasic variables can be fixed. Of course, there is no criterion to
guarantee “sufficiently late” in practice.

The technique has proved to be viable for resolving two computational issues. The first
problem were round-off errors in the linear solver if nonbasic scaling factors became large or basic
scaling factors became small. This situation corresponds precisely to the presence of superbasic
variables in the solution. The second problem was caused by unbounded solution sets, in which
case the IPM tends to push ‖x‖ or ‖(y, z)‖ to infinity. An unbounded primal solution requires
some xj for j ∈ N to become large, because otherwise ‖xB‖ =

∥∥A−1
B (b−ANxN)

∥∥ would be
bounded as soon as the iterates approach feasibility. Similarly, an unbounded dual solution
requires zj to become large for some j ∈ B. Both problems could be solved by dynamically
fixing variables at their current values. Details of the implementation are given in Section 6.7.

52

6 Implementation of the Interior Point Solver

This chapter3 describes the implementation of a linear programming interior point solver based
on the ideas discussed so far. The main features of the solver are the following: the IPM uses
iterative linear algebra with basis preconditioning, where the basis is updated from one interior
point iteration to the next to maintain a large volume; for the early IPM iterations a less
sophisticated (and less expensive) preconditioner is used; at the switch to basis preconditioning
a starting basis is constructed by a “crash” procedure; degenerate variables are eliminated
during the optimization process to improve numerical stability and to allow running the IPM
to high accuracy; the final basis from the preconditioner serves as starting basis for crossover.

The resulting software package is called IPX and comprises about 10,000 lines of executable
C++ code. The package does not implement a sparse LU factorization for the basis matrices
by itself. Instead it can interface any code that provides the well-known simplex operations
invert, ftran, btran and update. By default the author’s BASICLU package is used, which
is presented in Chapter 7.

The following sections describe the algorithmic components of IPX from a high-level perspec-
tive. Data structures and coding details are discussed only if they are novel and non-obvious.
A test set of 165 LP models is used to present statistics and to illustrate the effect of algo-
rithmic decisions. The set was composed for benchmarking (see Chapter 8) and represents a
wide range of medium to large-scale problems. The models and their solution times are given
in Appendix A.

IPX internally stores the LP model in computational form of a primal-dual pair,

minimize
x,xl,xu

cTx (6.1a)

subject to Ax = b,
x− xl = l,
x+ xu = u,
xl,xu ≥ 0,

and

maximize
y,zl,zu

bTy + lTzl − uTzu (6.1b)

subject to ATy + zl − zu = c,
zl, zu ≥ 0,

where A is an m×(n+m) matrix whose rightmost m columns form the identity matrix. The first
n and the last m components of x are termed “structural” and “slack” variables, respectively,
although the objective coefficients of slack variables do not need to be zero. Entries of −l and
u are allowed to be infinity, in which case the corresponding dual variable is fixed at zero and
its term is dropped from the dual objective. We define the index sets

L = {j | lj > −∞}, U = {j | uj <∞}.

A variable xj is termed “free” if it has no finite bound and “fixed” if its lower and upper bounds
are equal. It is assumed that only structural variables can be free and only slack variables can
be fixed (otherwise a column and/or row of A can be trivially eliminated). Although fixed slack
variables could be eliminated as well, we keep them as variables in the problem formulation
until the switch to basis preconditioning (Section 6.6). This guarantees that A has full row
rank and, as the following presentation will show, makes the implementation of several parts of
the LP solver more convenient.

3Parts of the material were published by the author in the form of a technical report [72].

53

6.1 Preprocessing

IPX accepts user input in the form

minimize
x

c̄Tx

subject to Āx {=,≤,≥} b̄,
l̄ ≤ x ≤ ū,

where Ā is an m̄× n̄ matrix. By default a row and column scaling is applied to the input data.
If Ā contains entries of a wide range of magnitudes, scaling leads to more flexibility for pivoting
in the LU factorization of basis matrices. It also reduces the condition number of

[
Ā I

]
, which

is decisive for the convergence rate of the linear solver in early interior point iterations.
A variant of the recursive matrix equilibration from Knight et al. [41] has shown to be

effective on badly scaled models. Their algorithm iteratively scales the rows and columns of a
matrix by the reciprocal of the square root of their infinity norm. It was proved in [41] that the
scheme converges to an equilibrated matrix (i. e. each row and column attains infinity norm 1
in the limit). In IPX the method is applied to Ā. In each scaling iteration the scaling factors
are truncated to powers of 2, so that no round-off errors occur. The algorithm is terminated
when the infinity norm of each row and column is contained in the interval [0.5, 8). On many
well-posed models from our test set no scaling operations were required, but for some badly
scaled models equilibration was necessary to avoid numerical trouble in the linear algebra.

The user model is then transformed into computational form with optional dualization. If
the input becomes the primal problem, then A =

[
Ā Im̄

]
; and if it becomes the dual problem,

then A =
[
ĀT (−In̄)J In̄

]
, where J is the set of variables with finite lower and upper

bounds. The reason for dualization is that the linear algebra implementation is optimized for
matrices A with (many) more structural columns than rows. If the user does not make an
explicit choice, the model is dualized if m̄ > 2n̄.

6.2 Interior Point Algorithm

At an iterate
(
x,xl,xu,y, zl, zu

)
of the computational form LP model, the primal and dual

residuals are

rb = b−Ax, (6.2a)

rl = l− x+ xl, (6.2b)

ru = u− x− xu, (6.2c)

rc = c−ATy − zl + zu, (6.2d)

and the complementarity measure is

µ =
1

|L|+ |U|

∑
j∈L

xljz
l
j +

∑
j∈U

xuj z
u
j

 . (6.3)

The Newton step toward the central point with complementarity measure σµ for some σ ∈ [0, 1]
is defined by the linear system

AT I −I
A
I −I
I I

Zl X l

Zu Xu

∆x
∆y
∆xl

∆xu

∆zl

∆zu

 =

rc

rb

rl

ru

sl

su

 (6.4)

54

with sl = −X lZle+ σµe and su = −XuZue+ σµe.
Typically IPMs solve (6.4) for multiple right-hand sides at each iteration to compose a step

direction that makes better progress in reducing µ and/or keeps the iterates closer to the central
path. IPX implements a version of Mehrotra’s method [53], which composes the step from a
predictor and a corrector direction. Mehrotra’s method is widely considered to be the most
efficient method using two linear system solves per iteration. For implementations based on
Cholesky factorization it is common practice to compute more than one corrector direction to
reduce the iteration count of the IPM (see Gondzio [24]). This technique is not used in IPX
because iterative linear algebra does not offer large savings when solving multiple systems with
the same matrix. We have also not tried to implement an IPM with only one linear system
solve per iteration. The issue with a single system solve is not only that the step direction
makes less progress in reducing µ, but also that established rules for choosing the centering
parameter (σ in Algorithm 7) require the “affine scaling” direction obtained for sl = −X lZle,
su = −XuZue.

IPX’s interior point scheme is outlined in Algorithm 7. The computation of the starting
point and the heuristics for choosing the centering parameter σ and the step sizes are those
from Mehrotra [53] with the obvious modifications to accommodate lower and upper bounds
on the variables. Computing the starting point requires solving (6.4) for two right-hand sides.

The usual requirement in linear programming is to obtain 8-digit accuracy in the objective,
which leads to the termination criterion

|fp − fd| ≤ 10−8 (1 + 0.5|fp + fd|) , (6.5)

where fp and fd are the primal and dual objective value. By the choice of the starting point
and the behaviour of the algorithm, primal and dual feasibility are practically always satisfied
when the objective criterion is reached.

After eliminating ∆xl, ∆xu, ∆zl and ∆zu from (6.4), the linear system attains KKT form[
G AT

A 0

](
∆x
−∆y

)
=

(
ra

rb

)
, (6.6)

where ra = −rc + (X l)−1(sl + Zlrl)− (Xu)−1(su − Zuru) and G is the diagonal matrix with
entries gj = zlj/x

l
j + zuj /x

u
j . Notice that gj is zero if xj is a free variable. For the LP model

with lower and upper bounds on the variables, the scaling matrix D and an indicator matrix
H are defined by

dj =

{
g
−1/2
j if gj 6= 0,

1 if gj = 0,
hj =

{
1 if gj 6= 0,

0 if gj = 0,

so that (6.6) can be scaled to[
H DAT

AD 0

](
D−1∆x
−∆y

)
=

(
Dra

rb

)
. (6.7)

The iterative methods implemented in IPX compute an approximate solution to (6.7) of the
form [

H DAT

AD 0

](
D−1∆x
−∆y

)
=

(
Dra

rb

)
+

(
δ
0

)
, (6.8)

where δ is the residual vector. As termination criterion for the linear solver it is required that

‖δ‖∞ ≤ τ := ετ
√
µ, (6.9)

where ετ is a problem independent parameter. The criterion is motivated by the theory from
Chapter 4 because it maintains boundedness of

∥∥D−1∆x
∥∥ in terms of

√
µ, which is key to

55

Algorithm 7 Interior Point Algorithm

1: Compute starting point
(
x,xl,xu,y, zl, zu

)0
.

2: for k = 0, 1, . . . do
3: Compute rb, rl, ru, rc from (6.2) and µ from (6.3).
4: Stop if a termination criterion is satisfied.
5: Fix degenerate variables for which min(xlj , x

u
j) or max(zlj , z

u
j) is close to zero.

6: Compute preconditioner.
7: Set

sl = −X lZle, su = −XuZue

and solve (6.4) for the solution
(
∆xp,∆yp,∆x

l
p,∆x

u
p ,∆z

l
p,∆z

u
p

)
.

8: Choose centering parameter 0 ≤ σ ≤ 1.
9: Set

sl = σµe−X lZle−∆X l
p∆Z

l
pe,

su = σµe−XuZue−∆Xu
p∆Zup e

and solve (6.4) for the solution
(
∆x,∆y,∆xl,∆xu,∆zl,∆zu

)
.

10: Choose step sizes 0 ≤ αprimal ≤ 1 and 0 ≤ αdual ≤ 1.
11: Make step (

x,xl,xu
)k+1

=
(
x,xl,xu

)k
+ αprimal

(
∆x,∆xl,∆xu

)
,(

y, zl, zu
)k+1

=
(
y, zl, zu

)k
+ αdual

(
∆y,∆zl,∆zu

)
.

the convergence of the IPM. Choosing a smaller tolerance increases the computational cost per
linear system but reduces the number of interior point iterations as the step directions become
more accurate. The effect on the total computation time is quite moderate, however. On our
test set varying ετ between its default value 0.3 and within the range [0.05, 0.5] changed the
geometric mean of the IPX runtimes by 8%.

Given an approximate solution to the KKT system, the order in which the remaining step
components are recovered determines to which of the block equations in (6.4) the residual
propagates. To satisfy the dual feasibility equations exactly, IPX sets

∆xl = −rl + ∆x,

∆xu = ru −∆x,

∆zlj = (slj − zlj∆xlj)/xlj for all j for which zlj/x
l
j < zuj /x

u
j ,

∆zuj = (suj − zuj ∆xuj)/xuj for all j for which zlj/x
l
j ≥ zuj /xuj ,

∆zlj = rcj − (AT∆y)j + ∆zuj for all j for which zlj/x
l
j ≥ zuj /xuj ,

∆zuj = −rcj + (AT∆y)j + ∆zlj for all j for which zlj/x
l
j < zuj /x

u
j .

By this choice the first four block equations in (6.4) are solved exactly and the residual is shifted
between the last two blocks. If a variable has two finite bounds and is active at its lower bound
in the solution, the residual eventually occurs in the equation zlj∆x

l
j + xlj∆z

l
j = slj . Because in

this case xlj → 0 but xuj → (xuj)∗ > 0, adjusting ∆zlj to satisfy dual feasibility causes a smaller
residual in the right-hand side to (6.4) than adjusting ∆zuj .

56

6.3 Initial Iterations

At the early interior point iterations the KKT matrix is usually well conditioned by itself
and a simple and inexpensive preconditioner suffices to achieve fast convergence of the linear
solver. This is exploited by performing a few “initial iterations” of the IPM before starting
basis preconditioning.

The KKT matrix in (6.6) is nonsingular if and only if A has full row rank and the columns
of A corresponding to zeros on the diagonal of G are linearly independent. While the first
requirement is satisfied after adding slack variables to all constraints, the latter requirement
might not be. To overcome the problem at the beginning, zeros on the diagonal of G are replaced
by the regularization value min{{gj | gj 6= 0}, µ}, where µ is given by (6.3). Regularization can
significantly change the solution to the linear system, but using it in the initial iterations has
shown to be unproblematic for the convergence of the IPM. The regularization value is chosen
to yield a well conditioned KKT matrix as long as the remaining diagonal entries of G are
balanced and µ is sufficiently large. Including µ in the definition guarantees that regularization
is eventually reduced to zero even if none of the remaining gj becomes small (i. e. if all non-free
variables are at a bound in the solution).

Regularization also ensures that the KKT system can always be reduced to normal equations

AG−1AT∆y = rb −AG−1ra =: r. (6.10)

From an approximate solution for ∆y the solution components ∆x to the KKT system are
recovered from

∆xN = G−1
N (ra +AT∆y)N , ∆xB = rb −AN∆xN ,

where G is the regularized matrix and B = {n+ 1, . . . , n+m} is the slack basis. By definition
of ∆x, the solution satisfies (6.8) with δN = 0. Using that H = In+m, AB = Im and G = D−2,
we obtain

δB = D−1
B ∆xB −DBATB∆y −DBraB

= D−1
B (rb −AN∆xN)−DBATB∆y −DBraB

= D−1
B (rb −ANG−1

N (raN +ATN∆y))−DBATB∆y −DBraB
= D−1

B
(
rb −ANG−1

N r
a
N −ANG−1

N ATN∆y −D2
B∆y −D2

Br
a
B
)

= D−1
B
(
rb −AG−1ra −AG−1AT∆y

)
.

Therefore the accuracy requirement (6.9) is satisfied if∥∥∥G1/2
B (r −AG−1AT∆y)

∥∥∥
∞
≤ τ.

IPX uses the Conjugate Residual (CR) method [68, Section 6.8] for solving positive definite
linear systems. The CR method is a Krylov subspace method, originally proposed by Luenberger
[50] for the symmetric indefinite case, whose iterates minimize the 2-norm of the residual.
Algorithm 8 states the CR method for solving Cy = r while incorporating a preconditioner
given by a symmetric positive definite matrix M . The iterates y of the algorithm are related
to the iterates u generated by the unpreconditioned CR method applied to

M−1/2CM−1/2u = M−1/2r (6.11)

by y = M−1/2u. Consequently the residual ρ and the preconditioned residual π = M−1ρ in
Algorithm 8 satisfy

πTρ =
∥∥∥M−1/2(r − Cy)

∥∥∥2

,

57

and this quantity is minimized by y over a Krylov subspace.
It turned out that the update to π in line 13 might not be sufficiently accurate when M is

ill conditioned. It happened that ‖π‖ converged to zero while ‖ρ‖ stagnated. To safeguard the
implementation, π is recomputed from π = M−1ρ every 5 iterations at the cost of an extra
operation with M−1. The issue does not arise with basis preconditioning, where a different
implementation of the CR method will be used.

Algorithm 8 Preconditioned CR Method

Input: C,M ∈ Rm×m symmetric positive definite, r ∈ Rm
Output: approximate solution to Cy = r

1: y = 0 // or an initial guess
2: ρ = r − Cy // residual
3: π = M−1ρ // preconditioned residual
4: ω = Cπ
5: ∆y = π // step direction
6: ∆ρ = ω // update to negative residual
7: γ = πTω
8: repeat
9: ∆π = M−1∆ρ // can be stored in ω

10: α = γ/∆πT∆ρ
11: y = y + α∆y
12: ρ = ρ− α∆ρ
13: π = π − α∆π
14: ω = Cπ // restores ω
15: γnew = πTω
16: β = γnew/γ
17: ∆y = π + β∆y
18: ∆ρ = ω + β∆ρ
19: γ = γnew

20: until a termination criterion is satisfied

In an early version of the code the initial IPM iterations were performed with diagonal
preconditioning, where M is obtained by dropping all off-diagonal entries from AG−1AT . The
method has been refined for matrices A with “dense” columns; i. e. columns whose nonzero
count is much higher than the average. Let As and Ad be the sparse and dense part of A,
respectively, and let Gs and Gd be the corresponding diagonal blocks of G. The preconditioner
used in IPX is

M = diag(AsG
−1
s ATs) +AdG

−1
d ATd =: Ms +AdG

−1
d ATd .

By treating the second summand as a low-rank update, an inverse representation of M can be
derived from the Sherman-Morrison-Woodbury formula as

M−1 = M−1
s −M−1

s Ad(Gd +ATdM
−1
s Ad)

−1ATdM
−1
s .

Computing the representation requires a Cholesky factorization of a dense matrix of dimension
equal to the number of columns in Ad. Applying M−1 requires two multiplications with the
diagonal matrix M−1

s , matrix-vector products with Ad and ATd , and a forward and backward
solve with the dense Cholesky factor. The splitting into As and Ad is made by placing the
maximum number of columns into Ad such that each column in Ad contains more than 40
nonzeros and more than 10 times the number of nonzeros of any column in As; if this yields
more than 1500 columns in Ad, no columns are treated as dense.

58

The performance of the “augmented” to the pure diagonal preconditioner is compared in
Table 5 on the 34 problems from our test set for which Ad was not vacuous. For each pre-
conditioner the IPM was run for the same number of iterations (“ipiter”); the number was
chosen as the maximum that could be performed with both methods before switching to basis
preconditioning (see below). On 29 problems the augmented preconditioner led to fewer CR
iterations, and on 26 problems it also reduced the computation time. The geometric mean of
the ratios of CR iterations was 0.35 and the mean of the runtime ratios was 0.47, meaning that
the augmented method was a factor 2 faster on average. In those cases where it was relevantly
slower (30% for problem in and almost a factor 2 for ns2118727 and ns1687037), the iteration
counts were comparable but a large number of dense columns made the computations expen-
sive. From the results on these 34 problems, the maximum number of columns treated as dense
by IPX was adjusted to 1000.

Other than applying M−1, the major cost per CR iteration is computing the matrix-vector
product ω = AG−1ATπ. Without forming the normal matrix explicitly, there are two obvious
implementations. The first is to compute the intermediate result v = G−1ATπ and then
ω = Av. It is called “two-pass” method because it requires two passes over the matrix A,
either by rows or by columns. The second option is to initialize ω = 0 and then for each
column j to compute α = g−1

j ATj π and to update ω = ω + αAj . It is called “one-pass”
method because it makes one pass over a columnwise storage of A. The one-pass method and
several versions of the two-pass method using rowwise or columnwise access to A have been
implemented in IPX and benchmarked over a diverse set of LP matrices. On average the one-
pass variant was 17% faster than the best two-pass variant and it was also the fastest method on
most of the matrices. The advantage of the one-pass technique is that the matrix A is fetched
into cache memory only once. The method is now used for all matrix-vectors products with
normal matrices in IPX.

For terminating the initial interior point phase an iteration limit of min(500, 10+m/20) is set
for the linear solver. If convergence is not achieved either while computing the predictor or the
corrector direction, the current interior point iteration is restarted with basis preconditioning.
Taking the geometric mean over the 87 problems from our test set that took longer than 10
seconds to solve, the initial iterations accounted for 8% of the IPM runtime.

6.4 Basis Preconditioned CR Method

Basis preconditioning enables a specific reduction of the KKT system to a smaller, positive
definite one. Assume first that the computational form LP model does not contain free variables.
Then G has a zero-free diagonal, D = G−1/2 and (6.6) can be reduced to normal equations

AD2AT∆y = rb −AD2ra =: r.

Given a basis B, this system is transformed into

C∆u := (ABDB)−1AD2AT (ABDB)−T∆u = (ABDB)−1r (6.12)

and solved by the CR method for ∆u. The transformation is algebraically equivalent to applying
the preconditioned CR method (Algorithm 8) with M = ABD2

BA
T
B to the normal equations,

but iterating on ∆u rather than ∆y has shown to be numerically more stable when ABDB is ill
conditioned. From an approximate solution for ∆u a solution to the KKT system is recovered
from

∆y = (ABDB)−T∆u,

∆xN = D2
N (raN +ATN∆y),

∆xB = A−1
B (rb −AN∆xN).

59

name ndense ipiter diagonal augmented
iter time iter time

Linf bts4 2 6 1547 2.17 996 1.61
Linf five20b 2 4 617 0.92 404 0.69
jendrec1 58 6 1132 0.21 154 0.06
scfxm1-2r-256 54 7 2733 1.39 1326 0.79
stormg2-125 119 28 14164 15.75 986 1.43
stormg2 1000 119 9 4334 44.61 202 2.57
app1-2 265 12 2711 2.40 876 1.20
buildingenergy 19 2 331 1.30 69 0.36
dano3mip 1 6 595 0.13 586 0.13
in 1475 7 817 35.68 892 46.70
neos-506428 22 8 2001 2.50 660 0.92
neos-631710 556 9 512 1.87 174 0.96
neos-738098 1 4 935 0.27 1169 0.36
ns1663818 3 1 958 38.04 964 38.85
ns1758913 265 18 4407 11.28 198 0.71
ns1853823 656 9 1533 7.44 398 2.85
ns1854840 474 17 3518 10.48 1684 7.11
ns1905797 348 5 819 0.53 47 0.06
ns2017839 6 12 3949 3.86 1776 2.11
ns2118727 1248 10 3033 8.94 2988 17.05
ns2137859 320 19 3180 6.70 1731 5.31
opm2-z11-s8 8 12 2271 2.25 2175 2.44
opm2-z12-s7 8 12 2305 3.30 1426 2.33
reblock420 20 17 2904 0.93 580 0.22
rmatr100-p5 100 9 2629 0.34 1144 0.20
rmatr200-p5 200 8 3337 1.93 900 0.72
rmine14 28 14 3927 6.64 1636 3.35
rmine21 42 8 1721 16.28 367 4.31
wnq-n100-mw99-14 200 15 3225 9.49 208 0.79
neos1 1 8 1100 0.92 1146 0.97
neos3 1 7 1260 3.50 842 2.38
ns1687037 874 8 1322 7.65 1328 13.67
ns1688926 105 5 1005 2.21 198 0.92
nug30 900 11 1702 7.43 987 5.63

Table 5: Number of CR iterations and computation time (in seconds) for the diagonal and
augmented diagonal preconditioner.

60

By definition of ∆x, the solution satisfies (6.8) with δN = 0 and

δB = D−1
B ∆xB −DBATB∆y −DBraB

= D−1
B A−1

B (rb −AN∆xN)−∆u−DBraB
= D−1

B A−1
B r

b −D−1
B A−1

B AND
2
N (raN +ATN∆y)−∆u−DBraB

= (ABDB)−1rb − (ABDB)−1AD2ra −
(
Im + (ABDB)−1AND

2
NA

T
N (ABDB)−T

)
∆u

= (ABDB)−1r − C∆u,

which is the residual in (6.12). To satisfy the accuracy requirement (6.9), the iterative method
is terminated when the infinity norm of the residual in (6.12) becomes smaller than τ . By
solving the transformed system, the residual for the termination test is readily available.

When G has zeros on the diagonal, the KKT system can still be reduced to normal equations
if all free variables are basic. This requirement is satisfied by the initial basis in IPX (see
Section 6.6) and is maintained throughout. Hence let B = B0 ∪ B1, where B0 are the indices of
all free variables. Then (6.7) can be permuted to

IN DNATN[
IB1

0

]
DBATB

ANDN ABDB 0

D−1
N ∆xN

D−1
B ∆xB

−∆y

 =

DNraN

DBraB

rb

 .

Transforming this system using the scaled basis matrix yields
IN DNATNA

−T
B D−1

B[
IB1

0

]
IB

D−1
B A−1

B ANDN IB 0

D−1
N ∆xN

D−1
B ∆xB

−∆u

 =

DNraN

DBraB

D−1
B A−1

B r
b

 ,

where ∆u = DBATB∆y as before. It follows from the second block equation and DB0
being the

identity matrix that the components of −∆u corresponding to free variables are given by raB0

and can be eliminated. Also, the components of ∆xB corresponding to free variables can be
removed from the linear system and can be computed from the third block equation once the
remaining components of D−1∆x are known. Let P =

[
IB1

0
]

have m columns. The resulting
linear system is IN DNATNA

−T
B D−1

B PT

IB1
IB1

PD−1
B A−1

B ANDN IB1 0

D−1
N ∆xN

D−1
B1

∆xB1

−P∆u

 =

 DNraN
DB1

raB1

PD−1
B A−1

B r
b

−
ξ0

0

 ,

where

ξ = DNA
T
NA
−T
B D−1

B

(
0
raB0

)
= DNA

T
NA
−T
B

(
0
raB0

)
.

Because the upper left 2× 2 block now has a zero-free diagonal, the system can be reduced to
normal equations(

IB1
+ PD−1

B A−1
B AND

2
NA

T
NA
−T
B D−1

B PT
)

(P∆u) =

− PD−1
B A−1

B ANDN (DNr
a
N − ξ)−DB1

raB1
+ PD−1

B A−1
B r

b, (6.13)

and can be solved for P∆u. The solution for ∆u is completed by inserting the components
corresponding to free variables given by −raB0

.

61

The dimension of (6.13) is m minus the number of free variables. In the IPX implementation
the CR method always operates on vectors of dimension m, in which components corresponding
to free variables are initialized to zero and are reset to zero after each matrix-vector product
with C defined in (6.12). The only actual change to the code was to replace the right-hand side
of (6.12) by that of (6.13), scattered into a full size vector. The result is a concise handling of
free variables, which implicitly reduces the dimension of the linear systems.

Computing matrix-vector products with the transformed normal matrix

C = Im + (ABDB)−1AND
2
NA

T
N (ABDB)−T (6.14)

is by far the dominating cost of one CR iteration. They are implemented through a matrix-
vector product with AND2

NA
T
N using the one-pass method, and two linear system solves with

an LU factorization of ABDB. The row and column permutation from the LU factorization are
applied a priori to AN and to the vectors occurring in the CR method, respectively, so that no
permutations are needed in the CR iterations.

6.5 Maintaining a Basis Matrix

The idea for the preconditioner in IPX is to use a ρ-maximum volume basis of AD, given some
parameter ρ ≥ 1. As discussed in Chapter 2, finding such a basis requires an iterative update
procedure. The difficulty in implementing an update method is finding pivot elements effi-
ciently. Because the scaled tableau matrix D−1

B A−1
B ANDN is only available implicitly through

operations with A−1
B , searching systematically for an entry that is larger than ρ in absolute

value is expensive, as shown by the experiments in Section 2.3. For large-scale problems it is
generally impractical to compute all entries of the tableau, so that we cannot even test if a
given basis has ρ-maximum volume.

To make the approach practical, the target must therefore be relaxed, keeping in mind that
the ultimate goal is solving the linear systems efficiently. The author’s idea was to update
the basis as long as pivot elements which increase the volume are readily found, and to stop
updating when the pivot search becomes costly. The key component of such a method is the
rule for selecting candidate rows or columns of the scaled tableau matrix to be “scanned” for
pivot elements.

A first approach was to choose a nonbasic variable as candidate to enter the basis if its scaling
factor increases significantly, or likewise to choose a basic variable as candidate to leave the basis
when its scaling factor decreases significantly. Computational results were disappointing. The
issue was that when the LP model is primal (or dual) degenerate, there exist basic variables
whose scaling factor tends to zero (or nonbasic variables whose scaling factor tends to infinity)
as the IPM converges. These variables were tried repeatedly to leave (or to enter) the basis,
without finding a sufficiently large entry in the corresponding row (or column) of the scaled
tableau matrix. Because in practice LP models are often highly primal and dual degenerate,
choosing candidate variables by looking only at their scaling factor is not effective.

Better results were obtained by computing a weight for each nonbasic variable based on
the entries in its scaled tableau column, and choosing the variable with maximum weight as
candidate to enter the basis. Such a procedure is stated in Algorithm 9.

Assume first that the parameter nslices is 1. Then wj is the sum of entries in column j
of the scaled tableau matrix if j ∈ N . The algorithm chooses the index with maximum such
weight as candidate and computes the corresponding column of the scaled tableau matrix. If
its maximum entry is larger than ρ in absolute value, the basis is updated. In this case the
tableau row needs to be computed as well for updating the column sums (line 14). If a column
does not contain a pivot element, it is not search again in that interior point iteration. After
computing maxskip+ 1 columns without finding a pivot, the algorithm terminates.

62

Algorithm 9 Maxvolume Heuristic

Input: basis B, parameters (ρ, nslices,maxskip) with ρ ≥ 1, 1 ≤ nslices ≤ m, maxskip ≥ 0.
1: for s = 0 to nslices− 1 do
2: Let u ∈ Rm, w ∈ Rn+m.
3: for i = 1 to m do // set row mask
4: ui = 1 if mod(i, nslices) = s
5: ui = 0 if mod(i, nslices) 6= s

6: wT
N = uTD−1

B A−1
B ANDN , wB = 0 // initialize column weights

7: nskipped = 0 // count “skipped” columns
8: while nskipped ≤ maxskip do
9: j = arg maxk |wk| // choose candidate column

10: Compute v = D−1
B A−1

B Ajdj .
11: if ‖v‖∞ > ρ then
12: p = arg maxi |vi|
13: Bp = j
14: Update w.
15: else // no pivot found in column j
16: nskipped = nskipped+ 1
17: Flag column j to be excluded from pivot search.

When nslices > 1, then in each iteration of the outer loop only a subset of the rows of the
tableau matrix contributes to the column weights. This slicing of the tableau matrix decreases
the chance that when a column has large positive and negative entries that these cancel out in
the column sum; and it makes the algorithm adaptive to the number of rows of A.

IPX runs Algorithm Maxvolume Heuristic at the beginning of each interior point iteration
with the new scaling matrix D and the basis from the previous iteration as starting basis.
Free and fixed variables are excluded from the pivot search and remain basic and nonbasic,
respectively. The default parameters are nslices = 5+bm/10000c andmaxskip = 10. Assuming
that the IPM performs no more than 100 iterations, the total number of skipped columns is
bounded by 5000 +m/10. The specific parameter values have shown little effect on the number
of basis updates and the quality of the basis preconditioner.

To investigate the number of basis updates and CR iterations, we consider two LP models,
pds-20 and nug20, which have similar dimensions (see Table 6) but different characteristics.
IPX was run on these models twice, once using Algorithm Maxvolume Heuristic for updating the
basis, and once using Algorithm Maxvolume Sequential from Section 2.3, which yields a (true)
ρ-maximum volume basis. Each update method was run with parameter ρ ∈ {1.1, 2.0, 4.0, 10.0},
giving a total of 8 IPM solves per model. We note that computing the ρ-maximum volume basis
through Algorithm Maxvolume Sequential was a very expensive task for nug20 and is not an
option in practice. For the comparisons, IPX was run without fixing variables (Section 6.7)
and without crossover (Section 6.8); the remaining parameters were defaults. The initial IPM
iterations and the starting basis were the same for all runs on the same model.

The number of basis updates and CR iterations per interior point iteration are plotted in
Figures 3 and 4, and their grand totals (excluding initial IPM iterations) are given in Ta-
ble 6. Regarding the total number of basis updates, there is little difference between Algorithm
Maxvolume Heuristic and Algorithm Maxvolume Sequential, except for ρ = 1.1. This means
that if there would exist an efficient method for finding pivot elements, then maintaining a
(true) ρ-maximum volume basis for ρ ≥ 2, say, would be computationally feasible. Regarding
the plots of the CR iteration counts, it is seen that for both models and all values of ρ the curves
closely resemble each other, showing that the heuristically found basis yields an equally good

63

name (dimension) ρ Maxvolume Heuristic Maxvolume Sequential
updates CR iter updates CR iter

pds-20 1.1 2708 3700 3546 3554
(m = 12081, 2.0 1899 4370 1981 4109
n = 81163) 4.0 1654 5738 1648 5564

10.0 1492 9225 1493 8869
nug20 1.1 15051 22028 29184 17559
(m = 14098, 2.0 10383 25654 11993 22033
n = 72546) 4.0 8455 34299 9075 29854

10.0 7137 58039 7396 49747

Table 6: Total operation counts.

preconditioner as a maximum volume basis. The curves also illustrate the typical behaviour of
the CR iteration counts during the course of the IPM: one or more peaks usually occur after
the switch to basis preconditioning, and the iterations level out toward the end of the interior
point solve.

On the two example models, a smaller ρ systematically reduced the number of CR iterations.
The behaviour is not always that clear, however. As discussed in Section 3.1, sparsity in
the tableau matrix can also have a large effect on the spectrum of C and thereby the CR
iteration count. This is seen quite impressively by comparing the hypersparse pds-20 to the
not-hypersparse nug20. Despite their similar dimensions, the average number of CR iterations
per linear system (not shown) was about 10 times higher for nug20. When the density of the
tableau matrix varies significantly between different bases, it can happen that a smaller ρ leads
to more CR iterations. Such a behaviour has been observed on a number of LP models. It
is not obvious how to choose a basis that preserves sparsity as far as possible while targeting
the maximum volume criterion. In the LP context this remains an important topic for further
investigation.

When the correlations are as clear as in Table 6, then the optimal ρ in terms of total
computation time must trade-off the cost for updating the basis to the reduction of the time
spent on the CR method. A larger set of models has shown that values between 2.0 and 4.0
lead to similar and close-to-optimal total runtime. Therefore IPX uses a problem independent
default of ρ = 2.0.

6.6 Crash Basis

At the switch to basis preconditioning a starting basis must be determined, given the current
interior point iterate and its associated scaling matrix D. To reduce the number of basis updates
in the first run of Algorithm Maxvolume Heuristic and to make the linear algebra operations
fast, the basis should have the following (often competing) properties:

(i) The basis matrix is well conditioned.

(ii) The basis matrix and ideally the tableau matrix are sparse.

(iii) The basis is close to a maximum volume basis for the current D.

(iv) All free variables are basic.

(v) All fixed variables are nonbasic.

Making all free variables basic is required for the reduction of the KKT system to normal
equations (Section 6.4) and is always achievable. If the columns corresponding to free variables

64

 9 14 19 24 29 34 39 44 49 54

interior point iteration

0

50

100

150

200

250

b
a
s
is

 u
p
d
a
te

s

=10.0

=4.0

=2.0

=1.1

 9 14 19 24 29 34 39 44 49 54

interior point iteration

0

50

100

150

200

250

300

350

400

450

500

C
R

 i
te

ra
ti
o
n
s

=10.0

=4.0

=2.0

=1.1

Figure 3: LP model pds-20 with ρ-maximum volume basis (solid line) and heuristically com-
puted basis (dashed line).

65

 5 10 15 20 25 30

interior point iteration

0

1000

2000

3000

4000

5000

6000

b
a
s
is

 u
p
d
a
te

s

=10.0

=4.0

=2.0

=1.1

 5 10 15 20 25 30

interior point iteration

0

1000

2000

3000

4000

5000

6000

7000

8000

C
R

 i
te

ra
ti
o
n
s

=10.0

=4.0

=2.0

=1.1

Figure 4: LP model nug20 with ρ-maximum volume basis (solid line) and heuristically computed
basis (dashed line).

66

are linearly dependent, then the model is either dual infeasible or some of the variables are
redundant and can be fixed at an arbitrary value. The analogue requirement is to make all fixed
variables nonbasic, which allows them to be removed from the optimization entirely. Again,
this is always achievable, for if a fixed slack variable cannot be replaced in the basis, then
either is the corresponding row of A redundant and can be removed, or the model is primal
infeasible. In theory, such removals could happen during preprocessing. The computational
cost for these operations can be high, however, as it requires finding a basis that contains the
maximum number of free variables and the minimum number of fixed variables. Finding such a
basis is a nontrivial task in general. It is therefore preferable to construct a starting basis only
once at the switch to basis preconditioning.

The obvious method for finding a basis that satisfies (v) is by computing a rectangular LU
factorization of A after removing columns corresponding to fixed slack variables. This would
be unacceptably expensive for many large-scale problems, however. Instead, IPX “crashes” a
starting basis through the following steps:

Initial guess A set J of m column indices is constructed as follows:

(i) If the LP model contains free variables, the first step is computing an incomplete left-
looking LU factorization of the corresponding columns of A. In the left-looking method L
starts out to be the identity matrix and its strictly lower triangular part is computed one
column at a time. Let j be the next free variable, â = L−1Aj and i be such that |âi| is
maximum among all entries of |â| whose row has not been pivotal. If |âi| > 10−3, variable
j is added to J and the next column of L is composed from the entries of â/âi that are
nonzeros in Aj and have not been pivotal. (Restricting the column of L to the nonzero
pattern of Aj makes the factorization incomplete.) After processing all free variables, L
is discarded but the index set I of pivot rows is kept.

(ii) In the second and third step columns of A corresponding to fixed and free variables are
treated as vacant; i. e. they are treated as being structurally zero in A and AD. The
second step adds singleton columns to J if their entry in AD is sufficiently large. For
each i /∈ I the maximum entry in row i of |AD| and the maximum entry that lies in a
singleton column are determined. If the singleton entry is nonzero and not smaller than
0.5 times the maximum of the row, its column is added to J and i is added to I.

(iii) Let A33 be the submatrix of A composed of rows i /∈ I and columns j /∈ J . The third
step extends I and J by choosing a structurally independent subset of the columns of
A33. Processing in decreasing order of the dj , the next column from A33 is tested for
being structurally dependent on the columns from A33 already chosen by computing an
alternating augmenting path, see Duff [15]. If the candidate column is independent, its
index is added to J and the row that was newly matched by the augmenting path is
added to I. The method stops at the latest when |J | = m or when all columns of A33

have been processed. It is stopped before if too many candidate columns were structurally
dependent, ensuring that the computation time is small.

(iv) Finally J is completed by adding slack variables for i /∈ I.

Initial factorization The task is to find a well conditioned basis matrix that contains as many
columns of J as possible. A right-looking Markowitz LU factorization of AJ is computed with
the usual columnwise threshold pivoting. If during the course of the factorization all entries in a
column of the active submatrix become smaller than 10−3, the column is immediately removed
without choosing a pivot. After completion, the LU factors are padded with unit columns

67

whose row has not been pivotal. Accordingly a preliminary basis B is obtained composed of
indices of J and indices of slack variables.

Basis repair The resulting basis matrix AB would be nonsingular in exact arithmetic. It is
well known, however, that AB can have tiny singular values even if no small pivots occur in
the LU factorization, and such cases actually happen in practice. It is therefore essential to
control the condition number of AB and to repair numerical singularities if necessary. Because
the model is scaled during preprocessing so that the maximum entry of A is bounded by a
moderate number, a high condition number of AB can only be caused by large entries in A−1

B .
As described by Higham and Relton [35] a rook search is performed for estimating the maximum
absolute entry of A−1

B along with its position (p, i) in the matrix. If the entry is larger than
105, then Bp is replaced by the i-th slack variable and the rook search is repeated. During the
basis repair AB typically requires frequent refactorization due to numerical instability in the
LU update. If the basis matrix is refactorized, columns are dropped from the active submatrix
and replaced by unit columns as in the initial factorization.

Handling free and fixed variables The obtained basis may contain fixed slack variables
and may not contain all free variables. These “defects” are corrected by basis updates. For
each free variable that is nonbasic a column of the tableau matrix is computed and the variable
is pivoted into the basis if it can replace a non-free basic variable. If not, the model is either
declared dual infeasible or the free variable is fixed at zero. Likewise, for each fixed (slack)
variable in the basis a row of the tableau matrix is computed and searched for an exchange
column. If the tableau row is numerically zero, the model is either declared primal infeasible
or the constraint corresponding to the slack variable is removed. After correcting all defects,
the remaining fixed variables (which are nonbasic now) are excluded from the IPM solve.

The described procedure has been developed through extensive testing and works efficiently
on most real-world problems. Steps (i)–(iii) of the initial guess are designed to be fast and
to yield a column subset of close-to full rank. Depending on the characteristics of the LP
model, each of the three steps may add the majority of columns to J . Computing the starting
basis typically accounts for less than 5% of the total IPX runtime. In the cases where the
computation time is significant, the last step of the above procedure often dominates due to the
number of pivots for fixed variables. Processing these variables as described is advantageous
later, however, because otherwise fixed variables can lead to small step sizes in the IPM and
dependent equality constraints can cause dual variables to blow up.

The crash bases are surprisingly close to the bases at the end of the interior point solve. In
Table 7 the number of basis updates is reported in relation to m. Note that a value 0.25, for
example, means that at least 75% of the starting basis must be final.

6.7 Fixing Variables

Let us say that the scaling factor dj is primal degenerate if dj → 0 and j ∈ B, and dual
degenerate if dj →∞ and j ∈ N , when B is a basis of maximum cardinality (see Section 5.1).
Degenerate scaling factors correspond to degeneracies of the LP model and are a source of
numerical difficulties in the IPM. They eventually lead to multiplications with large quantities
and to divisions by small quantities for composing the right-hand side of (6.12), recovering
the solution to the KKT system and computing matrix-vector products with (6.14), even if
the entries in the scaled tableau matrix are bounded. The resulting round-off errors limit the
accuracy that can be achieved by the linear algebra. For that reason several models in our test
set could not be solved to 8-digit accuracy by an early version of IPX.

68

basis updates / m instances
0.000–0.010 24
0.010–0.025 8
0.025–0.050 6
0.050–0.100 16
0.100–0.250 46
0.250–0.500 22
0.500–1.000 38
1.000–3.350 5

Table 7: Number of basis updates in the IPM starting from crash basis (165 models in total).

A related issue are unbounded solution sets, in which case the IPM tends to push variables
toward infinity. An unbounded dual solution requires primal degeneracy of the LP model and
often manifests in some xlj or xuj for j ∈ B to converge to zero preliminarily. Consequently some
primal degenerate scaling factors already approach zero in early iterations. Both the degenerate
scaling factors and the large dual variables can severely limit the accuracy of the step directions
and prevent the IPM from reaching its termination criterion. The analogue can happen for an
unbounded primal solution set, but these occur less often because many LP models have finite
lower and upper bounds on the variables.

A robust solution to these issues is fixing degenerate variables during the optimization
process. The theoretical foundation for this was laid in Section 5.5. Its implementation in IPX
is stated in Algorithm 10, where for simplicity it is assumed that uj =∞ for all j. In the actual
implementation the smaller of xlj and xuj is considered in the loop over B and the larger of zlj
and zuj is considered in the loop over N . The procedure is executed in each IPM iteration with
basis preconditioning prior to updating the basis by the maximum volume algorithm.

Assume the parameters εp and εd to be small enough such that

xlj ≤ εp =⇒ (xlj)
∗ = 0 and zlj ≤ εd =⇒ (zlj)

∗ = 0 for all j, (6.15)

where
(
x,xl,xu,y, zl, zu

)∗
is a strictly complementary solution. If no basis exchange happens

in the loop over B, variable j is considered primal degenerate; i. e. its position in the basis
can only be filled by a variable whose scaling factors becomes zero. Similarly, if no exchange
happens in the loop over N , variable j is considered dual degenerate; i. e. it can only replace
basic variables whose scaling factor tends to infinity. The correctness of the procedure was
proved in Section 5.5 under the assumption that (6.15) holds and that the values of the fixed
variables are in the interior of the solution set. Both conditions will be satisfied for εp and
εd sufficiently small. If the conditions do not hold, then either the modified LP model will be
infeasible or the obtained “solution” will not be an optimal solution for the original problem.
As seen from line 10 of Algorithm 10, postprocessing a fixed dual variable increases the primal
residual if xj was not at its supposed bound. Similarly, postprocessing a fixed primal variable
in line 19 increases the dual residual if ATj y = cj was not satisfied for the column treated as
absent.

The default parameters in IPX are εp = εd = 10−9. Fixing variables resolved the linear
algebra issues caused by degeneracy and the blow-up of variables so that the IPM reached its
termination criterion on almost all models in our test set. The few problems that could not
be solved failed for other reasons (see Section 8.2). The IPM termination criterion requires
in addition to (6.5) that the relative primal and dual residuals are ≤ 10−6 (by default). The
termination condition is tested again after postprocessing fixed variables and rescaling the
solution to the user data. If it is not satisfied, then the final solution is declared “imprecise”

69

Algorithm 10 Fixing Degenerate Variables

Input: εp > 0, εd > 0.
1: for each j ∈ B do // Scan for primal degenerate variables
2: if xlj ≤ min(0.01zlj , εp) then

3: Let p be the position of j in B and compute rT = eTpD
−1
B A−1

B ANDN .
4: if ‖r‖∞ > 2 then
5: Replace j by j′ in the basis, where j′ ∈ N corresponds to the maximum

entry in |r|.
6: else
7: // Fix dual variable:
8: Store z̄lj = zlj .

9: Set cj = cj − zlj , zlj = 0, xlj =∞ and treat lj as −∞ in subsequent iterations.

10: After termination of the IPM restore zlj = z̄lj and set xj = lj , x
l
j = 0.

11: for each j ∈ N do // Scan for dual degenerate variables
12: if zlj ≤ min(0.01xlj , εd) then

13: Compute v = D−1
B A−1

B Ajdj .
14: if ‖v‖∞ > 2 then
15: Replace j′ by j in the basis, where j′ ∈ B corresponds to the maximum

entry in |v|.
16: else
17: // Fix primal variable:
18: Set b = b−Ajxj and treat column j as absent in subsequent iterations.
19: After termination of the IPM set xlj = xj − lj and zlj = 0.

and requires to be cleaned up by crossover and possibly a simplex run. This happened on 7
models in our test set.

Figure 5 visualizes the number of primal variables in relation to n and the number of dual
variables in relation to m that were fixed by the above procedure when running the IPM
to 8-digit accuracy. Each cross in the plot represents one model from our test set, counting
23 instances for which only primal variables became fixed, 50 instances for which only dual
variables became fixed, and 53 instances for which at least one primal and one dual variable
became fixed. On the majority of models a significant fraction of the variables (say > 1%)
was degenerate and close to a bound (primal) or close to zero (dual) when the IPM reached
its standard termination criterion. Regarding that εp and εd were chosen quite small, it is not
surprising that numerical difficulties can occur at this stage in the IPM.

6.8 Crossover

For the crossover it is convenient to combine the dual slack variables into z = zl − zu. A
primal-dual solution (x,y, z) then satisfies

Ax = b, ATy + z = c, (6.16a)

l ≤ x ≤ u, (6.16b)

zj ≤ 0 if xj > lj for all j, (6.16c)

zj ≥ 0 if xj < uj for all j. (6.16d)

The crossover method in IPX starts by “dropping” the final IPM iterate to an (x,y, z) that
satisfies (6.16b)–(6.16d); that means, for each variable either xj is set to a bound or zj is set

70

0 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0

fraction primal fixed

0

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

fr
a

c
ti
o

n
 d

u
a
l
fi
x
e

d

Figure 5: LP models scattered according to the number of variables fixed by the IPM.

to zero, depending on which perturbation is smaller. Dropping usually increases violation of
(6.16a). The basis from the preconditioner then serves as starting basis for the push phases
described in Section 5.4, where the superbasic variables are now N+ = {j ∈ N | lj < xj < uj}
and B+ = {j ∈ B | zj 6= 0}.

IPX always executes the dual push phase first. A dual push is blocked if the update to zN
would violate (6.16c)–(6.16d). Notice that in the form (6.16) the complementarity requirement
has been incorporated into the dual feasibility condition. Hence complementarity is maintained
even if the starting basis is not of maximum cardinality. In this case it can happen that an
update to zj is nonzero for some j ∈ N+, causing a block immediately. The required pivot that
exchanges i ∈ B+ by j ∈ N+ is called a “wrong pivot” because it would not occur if the IPM
had been run to sufficiently high accuracy. Wrong pivots occasionally appear in practice and
are treated as any other blocking in the dual push phase.

In the primal push phase superbasic variables can be moved toward any finite bound, and
the nearer one is chosen in IPX. A push is blocked if the update to xB would violate (6.16b).
Because there exist no dual superbasic variables, wrong pivots do not occur.

The push phases process primal and dual superbasic variables in decreasing and increasing
order, respectively, of the scaling factors from the final IPM iterate. Empirical tests did not
show a systematic difference in the number of pivot operations compared to other orderings,
and considering the scaling factors is the most natural choice that makes the computations
invariant to a column permutation of A.

In the implementation care must be taken with small pivot elements to prevent the basis
matrix from becoming too ill conditioned for finite precision arithmetic. A blocking variable
is eligible as pivot only if the pivot element is larger than 10−5 in absolute value. Among all
candidates the exchange variable is chosen by the two-pass ratio test proposed by Harris [34]
for the simplex method, which allows larger pivot elements by exploiting a feasibility tolerance

71

for (6.16b)–(6.16d) with default value 10−7. The combination of the two measures made the
implementation robust against failure due to a numerically singular basis matrix. The modified
pivot search proposed in Section 5.4 is not used in the final version of the code. It alone did not
prevent the basis matrix from becoming numerically singular in some cases, and in combination
with the two-pass ratio test it did not provide a significant improvement to the conditioning of
basis matrices.

Throughout the push operations the conditions (6.16b)–(6.16d) are maintained exactly by
truncating the update to a variable if necessary. Along with the initial dropping to complemen-
tarity and the fact that the primal and dual residuals of the final IPM iterate are not exactly
zero, this results in a violation of (6.16a). At the end of the push phases (x,y, z) is therefore
a basic solution to the LP model with perturbed right-hand side and objective, and B may
or may not be an optimal basis for the original problem. If it is not, reoptimization with the
simplex method is required.

The main reason for a non-optimal final basis is that the pairwise complementarity products
xljz

l
j and xuj z

u
j can be quite large when the IPM reaches the standard termination criterion (6.5),

resulting in a large perturbation. To reduce the number of simplex iterations in the clean-up,
IPX uses a more stringent termination criterion for the IPM when crossover is requested. In
addition to (6.5) it is required that

max
j
‖δxjAj‖∞ ≤ 10−8(1 + ‖(b, lL,uU)‖∞), (6.17a)

max
j
|δzj | ≤ 10−8(1 + ‖c‖∞), (6.17b)

where δxj and δzj are the perturbations to drop the iterate to complementarity. (For each j
either δxj or δzj is zero.) The reason behind the criterion is to control the (relative) primal and
dual residuals that are introduced by dropping any variable to complementarity. These residuals
are decisive for the cost of the simplex clean-up, so that using (6.17) is more appropriate than
controlling the complementarity measure (6.3).

On 60% of the models in our test set the stricter condition forced at least one extra interior
point iteration, and except for some badly scaled models no more than 6 iterations were needed.
Hence the additional computation time for the IPM is moderate, in particular because the final
iterations are typically fast with basis preconditioning. Using the stricter termination criterion
for the IPM, the basis after the push phases was optimal in 150 out of 165 cases.

An extreme example is the highly degenerate LP model nug30. Without imposing (6.17) the
vertex solution defined by the basis at the end of the push phases violated the bound constraints
by 7 · 10−4 and the dual sign condition by 5 · 10−5. Neither the primal nor dual simplex from
the commercial software Gurobi 7.0 finished within 36, 000 seconds. By imposing (6.17) the
IPM performed 4 additional iterations and the primal infeasibility of the final vertex decreased
to 9 · 10−11. The primal simplex then solved the model to optimality in one iteration.

A conventional IPM implementation would not be able to achieve (6.17) reliably because the
linear systems would eventually become too ill conditioned to be solved to sufficient accuracy.
Imposing the stringent termination criterion in IPX became possible by the dynamic elimination
of degenerate variables described in the previous section.

72

7 Computing and Updating Sparse LU Factors

Computing an inverse representation of a basis matrix and maintaining it after column changes
are the key operations for preparing a basis preconditioner in the IPM. The same type of matri-
ces and operations occur in the revised simplex method, for which tailored linear algebra kernels
have been developed over the past decades. This chapter reviews the two standard components
in modern simplex codes: the Markowitz LU factorization and the update method of Forrest
and Tomlin [18]. An extension to the update is presented that avoids its algebraic operations
whenever a “spiked matrix” can be permuted to triangular form. The implementation of the
factorization and update in a software package called BASICLU is described. The code was
written by the author to provide the linear algebra operations for IPX.

Throughout the chapter permutation matrices and permutation vectors are used. When
p and q are permutation vectors, B(p, ·) is the matrix whose i-th row is the pi-th row of B
and B(·, q) is the matrix whose j-th column is the qj-th column of B. The corresponding
permutation matrices P and Q are permutations of the identity matrix such that B(p, q) =
PBQT . A square matrix B is said to be “symmetrically permuted triangular” if there exists a
permutation matrix P such that PBPT is upper triangular.

7.1 Factorizing LP Basis Matrices

The invert procedure in simplex codes decomposes a basis matrix B into PBQT = LU , where
L is unit lower triangular, U is upper triangular and the permutations P and Q are chosen to
preserve sparsity and numerical stability.

A large part of LP basis matrices can often be brought to triangular form by permutation.
The first step in the basis factorization is therefore to permute B into

P̃BQ̃T =

B11 B12 B13

B22

B32 B33

 =

I B22

B32 I

B11 B12 B13

I
B33

 , (7.1)

where B11 and B22 are upper and lower triangular, respectively, and the “bump” B33 contains
no further singletons. In the form (7.1) column singletons have been eliminated before row
singletons, resulting in the B12 block to appear in U . This is desired because keeping L sparse
leads to a sparse spike column in the update. Finding the initial triangular form requires no
sparse matrix manipulations; it is done in BASICLU by a method of J. R. Gilbert, explained
in [13, exercise 3.7].

For the bump factorization a right-looking method with dynamic Markowitz ordering has
become standard in modern simplex codes. Each pivot step of a right-looking factorization
updates the “active submatrix”, which consists of the rows and columns that have not been
pivotal; see Duff et al. [16] for an introduction to sparse matrix factorizations. The Markowitz
ordering chooses the pivot element by means of a small Markowitz count (ri−1)(cj −1), where
ri and cj are the number of nonzeros in row i and column j of the active submatrix. The
Markowitz count is an upper bound on the fill-in created by the pivot operation. To ensure
numerical stability, an entry of the active submatrix is eligible as pivot only if it is not smaller
than a factor 0 < u ≤ 1 times the maximum in its column. Values between u = 0.01 and
u = 0.1 are commonly used in practice.

The implementation of the bump factorization in BASICLU follows mostly the description
of Suhl and Suhl [74]. The active submatrix is held columnwise and additionally its pattern
rowwise. A “file” data structure is used that allows fill-in by moving lines to the end of the
file when necessary. The pivot element is chosen by a truncated Markowitz search that scans a
limited number of rows and columns with a small nonzero count. In the elimination step the

73

pivot row and column are removed from the file and stored in the final factors, and the rank-1
outer product is added to the remaining submatrix. For the latter operation some implementa-
tion details have been adopted from the COIN-OR codes [11] CoinFactorization[1-4].cpp
due to J. J. H. Forrest.

The pivot tolerance u is a user parameter. Because it is not known a priori how small u can
be chosen, the stability of the factorization is tested a posteriori based on the method described
in [16, Section 4.7]. For certain right-hand sides b and c the solutions to Bx = b and BTy = c
are computed from the LU factors and the maximum of the scaled residuals

r1 =
‖b−Bx‖1

‖b‖1 + ‖B‖1 ‖x‖1
, r2 =

∥∥c−BTy∥∥
1

‖c‖1 + ‖BT ‖1 ‖y‖1

is reported to the user. In general, a factorization is considered numerically stable if the
scaled residuals are in order of machine precision for any right-hand sides (see Duff et al. [16,
Chapter 4]). In practice the test can only be evaluated for one or two vectors. The vector b is
constructed from L as in the LINPACK condition number estimate [16, Section 4.12]: it has
components ±1 and the signs are chosen during the course of solving Lx̃ = b with the aim of
making ‖x̃‖1 large. The vector c is constructed likewise from UT ỹ = c to make ‖ỹ‖1 large.
The hope is that an unstable factorization will be revealed by the residual of either b or c.

By default IPX sets the initial pivot tolerance to 0.0625. If the stability measure max(r1, r2)
of a basis factorization is larger than 10−12, the pivot tolerance for all subsequent factorizations
is adjusted to 0.3 and the factorization is repeated. This occurs rarely in practice, but for some
LP models it was necessary to obtain linear system solutions of sufficient accuracy.

7.2 The Forrest-Tomlin Update

Assume that B = LU is the factorization into a unit lower triangular matrix L and an upper tri-
angular matrix U , and let B̄ = B+(a−Bej)eTj be the basis matrix after a column change. The
Forrest-Tomlin (FT) update [18] computes a row eta matrix R and a symmetrically permuted
triangular matrix Ū such that B̄ = LRŪ , where a row eta matrix has the form

R =

1
. . .

rj1 · · · 1 · · · rjm
. . .

1

 . (7.2)

To derive formulas for R and Ū , the expression for B̄ is manipulated as follows (from [38]):

B̄ = B + (a−Bej)eTj
=⇒ L−1B̄ = U +

(
L−1a− Uej

)
eTj

=: U + (â− Uj) eTj =: Û .

Û is a spiked upper triangular matrix as illustrated in Figure 6(a). The FT update eliminates
the off-diagonal entries in row j of Û by a row transformation. Let wT be the row vector
corresponding to row j of U without the diagonal entry and let rT = wTU−1. Because rj = 0,
the matrix R = I + ejr

T has the form (7.2). Computing

R−1Û =
(
I − ejrT

)
Û = Ū

74

Figure 6:

j

(a) spike column in position j

j

(b) after eliminating off-diagonals

yields a matrix Ū in which row j is a singleton row with diagonal entry ūjj = âj − rT â.
Assuming that B̄ is nonsingular, ūjj 6= 0. Ū is illustrated in Figure 6(b). It can be brought to
upper triangular form by a cyclic permutation of rows and columns j to m.

Let Br be the basis matrix after r column changes to B. Applying the FT update r times
yields the factorization

Br = LR1 · · ·RrUr, (7.3)

where each of the Rk is a row eta matrix and Ur is symmetrically permuted triangular. The
permutation p that makes Ur(p,p) upper triangular is updated with each FT update by moving
the index of the spike column to the end. The form (7.3) allows solving linear systems with Br

and its transpose by forward and backward substitution with L and Ur and application of the
easily computed (Rk)−1.

When the sequence of eta matrices becomes uneconomically long, usually after between
200 and 2000 updates (see Huangfu and Hall [38]), the basis matrix is refactorized. Because
the FT update always pivots on the diagonal of U for eliminating off-diagonal entries in row
j, the entries in the row eta matrices can become large. If this leads to numerical instability,
refactorization is required earlier. Controlling the factorization frequency for stability and speed
is discussed by Koberstein [43, Section 6.2.3] and Huangfu [37, Section 2.2.4].

7.3 Permutation to Triangular Form

While updating very sparse LU factors it frequently happens that the spiked matrix Û is
already permuted triangular. In this case the row operations of the FT update are unnecessary
to restore triangularity. It will be shown how to efficiently find a permutation of Û to triangular
form if it exists. The method presented here was developed by author and described in [71].
The same idea was investigated at about the same time but independently by Fukasawa and
Poirrier [20].

Some background from graph theory is required. The sparsity pattern of an m×m matrix
B defines a directed graph G = (V,E) with nodes V = {1, . . . ,m} and edges (i, j) ∈ E when
Bi,j 6= 0. Self-edges for nonzero diagonal entries are included in E. A path j0 jk is a
sequence of nodes (j0, . . . , jk) where an edge exists from each node to the next in the sequence.
The nodes in the path other than j0 and jk are called “intermediate nodes”. A cycle is a path
j j with at least one intermediate node. (A self-edge is not a cycle.) ReachB(j) is the set of

75

all nodes i for which there exists a path j i in the directed graph of B. Note that j might not
be contained in ReachB(j) if the self-edge is not present. A symmetric permutation of matrix
B corresponds to a renumbering of the nodes in its graph G. B is symmetrically permuted
triangular if and only if G is acyclic.

The following lemma shows how a column permutation changes the directed graph of a
matrix.

Lemma 7.1. Let B be an m×m matrix and Q be the permutation matrix that reorders columns
j0, . . . , jn in a cycle; i. e. column jk+1 of B becomes column jk of BQ for 0 ≤ k ≤ n, where
jn+1 := j0. Denote G = (V,E) the directed graph of B and GQ = (V,EQ) the directed graph of
BQ. Then for any node i ∈ V

(i, jk) ∈ EQ ⇐⇒ (i, jk+1) ∈ E for 0 ≤ k ≤ n,
(i, j) ∈ EQ ⇐⇒ (i, j) ∈ E for j /∈ {j0, . . . , jn}.

For finding a permutation of a spiked matrix to triangular form, we have to distinguish
whether or not the diagonal entry of the spike column is zero. Let Û be obtained by inserting
the vector â into column j of the matrix U . For ease of notation it is assumed that U is upper
triangular, but the methods also work if it is symmetrically permuted triangular.

7.3.1 Spike has a nonzero diagonal entry

We first consider the case âj 6= 0. Because U and Û differ only in column j, and because entry
(j, j) is nonzero in both matrices, ReachU (j) = ReachÛ (j). An example for this is shown in
Figure 7.

In the following Uj denotes the set of indices of nonzeros in column j of U .

Theorem 7.2. Let Û have a zero-free diagonal and be upper triangular except for column j.
Then Û is permuted triangular if and only if

Ûj ∩ ReachÛ (j) = {j}. (7.4)

The permutation to triangular form is symmetric.

Proof. It is first shown that any permutation of a matrix with a zero-free diagonal to triangular
form is symmetric. The proof is by contradiction. Assume that U has a zero-free diagonal and
U(p, q) is upper triangular, where p 6= q are permutation vectors. Without loss of generality
let p1 6= q1 (otherwise consider a submatrix of U). Because U(p, q) is upper triangular, column
q1 of U is a singleton. However, because U and U(p, q) both have a zero-free diagonal, the
column has nonzeros in positions q1 and p1, which yields the contradiction.

Secondly it is shown that Û is permuted triangular if and only if (7.4) holds. Let G = (V,E)
be the directed graph of Û . Then Û is permuted triangular if and only if G is acyclic. Because
only column j of Û has entries below the diagonal, any cycle in G must contain node j. Such
a cycle exists if and only if i ∈ ReachG(j) for some i 6= j and (i, j) ∈ E.

Figure 7(b) illustrates the theorem. Because the intersection of Û3 = {1, 2, 3, 5, 6, 8} and
Reach(3) = {3, 4, 6, 9, 10, 11} is {3, 6}, Û is not permuted triangular. Indeed, its graph contains
the cycle 3 6 3. On the other hand, if the entry in row 6 of the spike was not present, Û
would be permuted triangular.

To implement the triangularity test, ReachU (j) must be computed, usually by a graph
traversal of U starting from node j (see, for example, [13, Section 3.2]). In some applications
this can be omitted. When eTj B

−1 has been computed before the update, then the (struc-

tural) nonzero pattern of eTj U
−1 has been determined, which is ReachU (j). Therefore Ûj and

76

3

4

6

9

10

11

1

2

5

7

8

(a) original matrix U

3

4

6

9

10

11

1

2

5

7

8

(b) Û with spike in column 3

Figure 7: Example matrix U and spiked matrix Û . The dark circles represent off-diagonal nonze-
ros. The diagonal is assumed zero-free and numbered for easy reference. Nodes in Reach(3) are
underlined.

ReachU (j) are available anyway and condition (7.4) can be tested at negligible cost. This
applies, for example, to the revised simplex method.

When Û is permuted triangular, the permutation to triangular form is obtained as follows.

Lemma 7.3. Let Û have a zero-free diagonal and be upper triangular except for column j.
If Û is permuted triangular, Û(p,p) is upper triangular, where p is obtained from the identity
permutation (1, . . . ,m) by removing the indices in ReachÛ (j) and appending them in topological
order to the end.

Proof. A matrix is upper triangular if the nodes in its graph G = (V,E) are numbered in
topological order; i. e. if (i, k) ∈ E only if i ≤ k.

Let p = (p1, . . . , ps, j, ps+2, . . . , pm), where the sequence (j, ps+2, . . . , pm) = ReachÛ (j) is in
topological order. Then the following holds true:

(i) The leading s × s block of Û(p,p) is upper triangular because it is the remainder after
removing rows and columns from the spiked upper triangular matrix Û , including the
spike column.

(ii) The trailing (m−s)×(m−s) block of Û(p,p) is upper triangular because (j, ps+2, . . . , pm)
is in topological order with respect to Û .

(iii) There are no edges (pl, pk) in the graph of Û for 1 ≤ k ≤ s and s + 1 ≤ l ≤ m,
because otherwise pk would be in ReachÛ (j). Hence Û(p,p) has a zero block of dimension
(m− s)× s below the diagonal.

Consequently, Û(p,p) is upper triangular.

7.3.2 Spike has a zero diagonal entry

Secondly, we consider the case âj = 0. Provided that Û is nonsingular, it cannot be the
symmetric permutation of a triangular matrix (a symmetric permutation does not permute
off-diagonal entries on the diagonal). It can be an unsymmetric permutation of a triangular
matrix, however.

77

1 2 3 4 5 6 7 8 9 10 11

(a) augmenting path in Û

1 2 4 6 7 8 10 115 9 3

(b) columns (3, 5, 9) cycled

Figure 8: Example matrix Û and permutated to zero-free diagonal. Dark circles and crosses
are nonzeros, the white square is a zero. Columns are numbered by their index in Û .

Lemma 7.4. Let Q be a permutation matrix such that ÛQ has a zero-free diagonal. If Û is
the permutation of an upper triangular matrix U , then ÛQ is a symmetric permutation of U .

Proof. Assume that P1ÛP2 = U for permutation matrices P1, P2. Then P1(ÛQ)QTP2 = U and
because ÛQ has a zero-free diagonal, it follows from the proof of Theorem 7.2 that PT1 = QTP2.
Hence ÛQ is indeed a symmetric permutation of U .

It follows that testing if Û is permuted triangular can be broken down into two steps. The
first step is to find a column permutation Q that makes the diagonal of ÛQ zero-free. Such
a permutation exists when Û has full structural rank. The second step is to test if ÛQ is
symmetrically permuted triangular. By Lemma 7.4 the result of step two is independent of the
specific choice of Q.

A column permutation Q that makes the diagonal of ÛQ zero-free is found by computing a
maximum matching. A maximum matching pairs each row i with a column j such that entry
(i, j) of Û is nonzero and no row or column is paired twice. The diagonal of Û already defines
a partial matching in which each row i is matched to column i except for row j. This matching
is increased by 1 by finding an alternating augmenting path [15]. In our setting, an alternating
augmenting path is defined by a sequence of column indices (j0, j1, . . . , jn), where j0 = j and
entries (jk, jk+1) for 0 ≤ k < n as well as (jn, j0) of Û are nonzero. The permutation matrix Q
which cycles columns j0, . . . , jn makes the diagonal of ÛQ zero-free. An alternating augmenting
path is found, for example, by a depth-first search with look-ahead as described by Duff [15].

Figure 8(a) shows a spiked upper triangular matrix in which the spike has a zero diag-
onal entry. The arrows illustrate an alternating augmenting path through columns (3, 5, 9).
Figure 8(b) shows the matrix after a cyclic permutation of these columns.

The column permutation Q defined by the augmenting path (j0, . . . , jn) makes ÛQ a spiked
upper triangular matrix with spikes in columns j0, . . . , jn, see Figure 8(b). Theorem 7.2 easily
adapts to a matrix with multiple spike columns:

Theorem 7.5. Let Ū have a zero-free diagonal and be upper triangular except for columns
j0, . . . , jn. Then Ū is permuted triangular if and only if

Ūjk ∩ ReachŪ (jk) = {jk} for 0 ≤ k ≤ n.

78

1 2 3 4 5 6 7 8 9 10 11

(a) example matrix Û

1 2 4 6 7 8 10 115 9 3

(b) columns (3, 5, 9) cycled

Figure 9: Both paths in Û become cycles after the column permutation.

Proof. This is shown analogously to the proof of Theorem 7.2 by using that any cycle in the
directed graph of Ū must contain at least one of the nodes j0, . . . , jn.

Theorem 7.5 gives a simple characterization of whether ÛQ (and hence Û) is permuted
triangular. It is inconvenient to implement, however, because computing ReachŪ (jk) requires
the pattern of the column permuted matrix Ū = ÛQ. In the implementation we would like to
apply the column permutation only for an update, i. e. after determining that Û is permuted
triangular.

There is another characterization of whether Û is permuted triangular given an augmenting
path. Stated in the following theorem, this result requires more effort to derive, but is convenient
to implement.

Theorem 7.6. Let Û be upper triangular except for column j0, which has a zero diagonal entry
and one or more nonzeros below. Let (j0, j1, . . . , jn) be an augmenting path in Û and jn+1 := j0.
Let G′ = (V,E′) be the directed graph of Û without the edges (jk, jk+1) for 0 ≤ k ≤ n. Then Û
is permuted triangular if and only if

jk+1, . . . , jn /∈ ReachG′(jk) for 0 ≤ k ≤ n− 1, (7.5a)

ReachG′({j0, . . . , jn}) ∩ Ûj0 = {jn}. (7.5b)

Before proving the theorem, it should be illustrated at an example. For the matrix in
Figure 8(a) G′ is the graph given by the pattern of dark circles. The crosses are the edges in
the augmenting path which are excluded from G′. The matrix is plotted again in Figure 9.
The dashed line in part (a) is a path 3 9, meaning that j2 ∈ ReachG′(j0). Hence condition
(7.5a) is violated. It is seen in part (b) how this path together with the self-edges of diagonal
entries of Û becomes a cycle in the column permuted matrix, confirming that Û is indeed not
permuted triangular. Condition (7.5b) is also violated because 11 ∈ ReachG′(5) and 11 ∈ Û3.
The dotted line in Figure 9 shows how that path in G′ becomes a cycle in the column permuted
matrix.

For the following proof of Theorem 7.6 some quantities are fixed: Q is the permutation
matrix corresponding to the augmenting path (j0, . . . , jn), jn+1 = j0, GQ = (V,EQ) is the

directed graph of ÛQ, and G′ = (V,E′) is defined in Theorem 7.6.

Lemma 7.7. For 0 ≤ k < l ≤ n there exists a path jl jk in GQ.

79

Proof. For 0 ≤ k ≤ n− 1, (jk+1, jk+1) is a self-edge in Û . By Lemma 7.1 (jk+1, jk) is an edge
in GQ. Consequently, for 0 ≤ k < l ≤ n there is a path jl jk in GQ.

Lemma 7.8. If there exists a path jk jl in G′ for some k 6= l, then GQ contains a cycle.

Proof. Assume that for some k 6= l there is a path jk jl in G′. We can assume without loss
of generality that the intermediate nodes do not contain any node of {j0, . . . , jn}.

If l = k + 1, the path contains at least one intermediate node j because (jk, jk+1) is not an
edge in G′. Hence jk j jk+1 is a path in G′. It follows from Lemma 7.1 that these edges
form paths jk j and j jk in GQ, so that GQ contains a cycle.

If l 6= k + 1, we can say that k + 2 ≤ l ≤ n + 1 because Û is upper triangular except for
column jn+1. It follows from Lemma 7.1 that jk jl−1 is a path in GQ. Because by Lemma 7.7
jl−1 jk is also a path in GQ, GQ contains a cycle.

Proof of Theorem 7.6. Because the diagonal of ÛQ is zero-free, Û is permuted triangular if and
only if GQ is acyclic. It will be shown that GQ is acyclic if and only if (7.5a) and (7.5b) hold.

“=⇒” For the “only if” implication assume that (7.5a) or (7.5b) are violated. If (7.5a) is
violated, then there exists a path jk jl in G′ for some l > k. By Lemma 7.8 GQ
contains a cycle.

Now assume that (7.5b) is violated. Then there exists an index j 6= jn, j ∈ Ûj0 , and some
0 ≤ k ≤ n such that j ∈ ReachG′(jk). We have to distinguish two cases:

(i) If j = jk, then (jk, j0) ∈ E′ and by Lemma 7.1 (jk, jn) ∈ EQ. Because jn jk is a
path in GQ by Lemma 7.7, GQ contains a cycle.

(ii) If j 6= jk, we can assume that j /∈ {j0, . . . , jn} because otherwise Lemma 7.8 applies.
We can also assume without loss of generality that jk j is a path in G′ whose
intermediate nodes do not contain any node of {j0, . . . , jn}. By Lemma 7.1 these
edges form a path jk j in GQ. Because (j, j0) ∈ E′ we have that (j, jn) ∈ EQ and
therefore jk j jn is a path in GQ. On the other hand jn jk is also a path in
GQ by Lemma 7.7. Hence GQ contains a cycle.

“⇐=” It is shown that if GQ contains a cycle, then (7.5a) or (7.5b) are violated. It must be
distinguished whether or not jn is in the cycle.

(i) Assume that there is a cycle in GQ containing node jn and let (j, jn) be an edge in
the cycle. Then j ∈ ReachGQ

(jn). Because

ReachGQ
(jn)

Lemma 7.7
= ReachGQ

({j0, . . . , jn}) = ReachG′({j0, . . . , jn}),

we have that j ∈ ReachG′({j0, . . . , jn}). On the other hand, because (j, jn) is a
nonzero entry in ÛQ, we have that j ∈ Ûj0 . It follows that (7.5b) is violated.

(ii) Assume that there is a cycle in GQ not containing node jn. Let 0 ≤ k ≤ n − 1 be
the smallest k such that node jk is in the cycle.

If another node jl is in the cycle, we can assume without loss of generality that
k + 1 ≤ l ≤ n − 1 is such that the intermediate nodes in the path jk jl do not
contain any node of {j0, . . . , jn}. By Lemma 7.1 jk jl+1 is a path in G′, violating
(7.5a).

On the other hand, assume that there is no node of {j0, . . . , jn} in the cycle other
than jk. Let (j, jk) be an edge in the cycle. Hence jk j jk is a path in GQ. By
Lemma 7.1 these edges form a path jk j jk+1 in G′, violating (7.5a).

80

When Û is permuted triangular, the permutation to triangular form is obtained as follows.

Lemma 7.9. Let ÛQ have a zero-free diagonal and be upper triangular except for columns
j0, . . . , jn. Let GQ be the directed graph of ÛQ. When ÛQ is permuted triangular, (ÛQ)(p,p)
is upper triangular, where p is obtained from the identity permutation (1, . . . ,m) by removing
the indices in ReachGQ

({j0, . . . , jn}) and appending them in topological order to the end.

Proof. Analogous to the proof of Lemma 7.3.

7.4 Implementing the Update

BASICLU combines the permutation method from the previous section with the FT update to
maintain the factorization

B = LR1 · · ·RrU (7.6)

after column changes to B. Here L is the symmetric permutation of a unit lower triangular
matrix, the Rk are row eta matrices of the form (7.2) and U is permuted triangular. Note
that the columns of L are indexed such that column i was computed in the elimination step
of the LU factorization in which row i was pivot row. Accordingly, the row indices of U are
(unpermuted) row indices of B. This form is preferred over using permuted indices because
updating U by an unsymmetric permutation changes the row-column pairings defined by the
pivot elements.

The factorization is stored by the following combination of data structures. Names starting
with capitals are variables of a composed data type, whereas lower case names denote arrays.

pmap, qmap are integer arrays of length m such that i = pmap[j] and j = qmap[i] if entry (i, j) of
U is a pivot element. Consequently U(pmap, ·) and U(·, qmap) are symmetrically permuted
triangular.

Lcols, Lrows hold the matrix L in compressed column and compressed row format, respec-
tively. The unit diagonal entries are not stored. The data structures are set up after
factorization and are not modified by updates.

Rrows stores for each eta matrix Rk the index of the nontrivial row and its off-diagonal entries.
The data structure starts out empty after factorization and entries are accumulated by
FT updates.

Ucols stores the matrix U(·, qmap) columnwise without the diagonal entries. When a column
of U is replaced, it is zeroed out in Ucols and the new column is stored at the end of the
memory space.

Urows stores the matrix U(pmap, ·) rowwise without the diagonal entries. The rows are held in
a file data structure that allows replacing one column of U at a time.

colpivots, rowpivots are real arrays of length m that hold two copies of the pivot elements,
one copy by column indices and one by row indices. That means, colpivots[j] is entry
(pmap[j], j) of U and rowpivots[i] is entry (i, qmap[i]) of U .

The rowwise and columnwise representation of L and U is required for solving all variants
of sparse triangular systems, which is inevitable for hypersparse LP problems. Notice that
the columns stored in Ucols are indexed by row indices of B, and the rows stored in Urows

are indexed by column indices of B. The benefit of this seemingly odd idea is that solving

81

Ux = b and UTx = b for a sparse b by the method of Gilbert and Peierls [21] does not require
indirection through pmap or qmap during the depth-first search.

The update of the factorization (7.6) is stated in Algorithm 11 without considering the
manipulation of data structures except for pmap and qmap. The high-level description lets us
focus on the method rather than technical details, but it is not difficult to see that the operations
fit naturally to the data structures above.

A factorization update is called “symmetric” when the diagonal entry of the spike is nonzero.
Lines 11–13 of Algorithm 11 implement condition (7.4) to test triangularity in the symmetric
case. The implementation implicitly works on the matrix U(·, qmap), which is symmetrically
permuted triangular before inserting the spike into column i0. It is exploited that rT was
computed before, whose nonzero pattern is Reach(i0) \ {i0}.

The triangularity test for the unsymmetric case is implemented in lines 18–28. It works on
the matrix U(pmap, ·), which is symmetrically permuted triangular before inserting the spike
into column j0. The rowwise storage of this matrix allows to traverse the out-adjacency list of
each node in its graph. The augmenting path (j0, . . . , jn) is computed by a breadth-first search
because it gives a path of minimum length and thereby reduces the work in the subsequent
loop. The reaches in lines 21 and 24 are determined by depth-first searches. To operate on the
graph G′, the edges (jk, jk+1) are temporarily replaced by self-edges (jk, jk) in Urows.

The FT update and the update by symmetric permutation do not change pmap or qmap.
In the unsymmetric case pmap is updated by a cyclic permutation of positions (j0, . . . , jn) and
qmap is updated as its inverse permutation (lines 32–33 in Algorithm 11).

So far, we have ignored the permutations p and q that make U(p, q) upper triangular.
Notice that p and q are not needed for updating the factorization or solving sparse triangular
systems. They are required, however, for solving Ux = b or UTx = b for a dense b, since they
determine in which order the columns or rows of U must be processed. Because an LU package
for general-purpose linear programming needs to allow efficient solution of linear systems with
a dense right-hand side, it is necessary to maintain p and q.

After a fresh factorization p and q are stored as vectors p and q of length m. As explained
in Section 7.3, each update requires moving some indices to the end of the vectors. Because
shifting indices cannot be done efficiently, the implementation only appends these indices to
the end of p and q, thereby generating duplicates and increasing the vector length. When the
length becomes too large, say 2m, garbage collection is performed.

Solving Ux = b for a dense b is outlined in Algorithm 12. The solve is carried out in a
work array of length m that initially holds b. When an index is retrieved from p for the first
time, the computation of its solution component is completed by dividing by the pivot element.
The work array is updated by subtracting a multiple of the corresponding column of Ucols

(which are indexed by row indices), and the solution value is stored in an output array. Its
position in the work array is set to zero. If an index occurs multiple times in p, then only at
the first occurence is its value in the work array (possibly) nonzero. In all later occurences, the
component of the work array is zero and the loop iteration is skipped.

Solving UTx = b proceeds similarly using Urows, colpivots and by traversing q from the
end. For triangular solves with L and a dense right-hand side, the permutation that brings L
to triangular form is available from the factorization. Note that in any case the columns or
rows of L or U are not accessed in memory order. Hence the solves are slower than with matrix
factors stored with permuted indices.

BASICLU enables solving each of the systems Lx = b, LTx = b, Ux = b and UTx = b
with a dense or sparse right-hand side. When the user requests solving Bx = b or BTx = b
with a dense right-hand side, then both triangular solves are performed dense. When the user
inputs a sparse right-hand side, then the first triangular solve is performed sparse, and the
second triangular solve is performed either sparse or dense, depending on if the (intermediate)

82

Algorithm 11 Combined LU update

Input: B = LR1 · · ·RrU , pmap, qmap, vector a to replace column j0 of B

1: Prepare update
2: i0 = pmap[j0]
3: Let wT be row i0 of U without the entry in position j0.
4: Compute rT = wTU−1.
5: Compute â = (Rr)−1 · · · (R1)−1L−1a.
6: Replace column j0 of U by â.

7: Test triangularity
8: istriangular = true
9: if âi0 6= 0 then // spike has nonzero diagonal entry

10: issymmetric = true
11: for all i for which âi 6= 0 do
12: if ri 6= 0 then
13: istriangular = false

14: else // spike has zero diagonal entry
15: issymmetric = false
16: Find augmenting path (j0, . . . , jn) in U(pmap, ·).
17: jn+1 = j0
18: Let G′ be the directed graph of U(pmap, ·) without the edges (jk, jk+1), 0 ≤ k ≤ n.
19: Assume that all nodes are unmarked.
20: for k = 0 to n− 1 do
21: Mark nodes in ReachG′(jk).
22: if node jk+1 is marked then
23: istriangular = false

24: Mark nodes in ReachG′(jn).
25: for all i for which âi 6= 0 do
26: j = qmap[i]
27: if j 6= jn and node j is marked then
28: istriangular = false

29: Apply update
30: if istriangular then // spiked matrix is permuted triangular
31: if not issymmetric then
32: pmap[jk+1] = pmap[jk] for 0 ≤ k ≤ n. // simultaneous assignment
33: qmap[pmap[jk]] = jk for 0 ≤ k ≤ n.

34: else // FT update
35: Compute pivot element α = âi0 − rT â.
36: Replace row i0 of U by a singleton row with nonzero α in position j0.
37: Append row eta matrix Rr+1 with off-diagonals in row i0 given by rT .

83

Algorithm 12 Solving Ux = b for a dense b

Require real arrays x and w of size m;
x is for output, w is workspace.

1: Copy b into w and initialize x to zero.
2: for k = length(p) to 1 backwards do
3: ipivot = p[k]
4: if w[ipivot] 6= 0 then
5: w[ipivot] = w[ipivot]/rowpivots[ipivot]
6: for each i for which Ucols[i, ipivot] 6= 0 do
7: w[i] = w[i]− Ucols[i, ipivot] · w[ipivot]

8: x[qmap[ipivot]] = w[ipivot]
9: w[ipivot] = 0

right-hand side has more than 0.05m nonzeros.

7.5 Benchmark on Simplex Bases

The combined update method from Algorithm 11 was compared to the pure FT update on
sequences of simplex bases. The test set were the 30 LP models used by Huangfu and Hall
[38], which represent a wide range of structural properties. For each model the pivot sequence
generated by the dual simplex method of CPLEX 12.7 [12] was recorded. CPLEX was run
without presolve, starting from the slack basis and using dual steepest edge pricing; the other
parameters were defaults. Problem Linf 520c was removed from the test set because it was
not solved within 12 hours. The remaining problems are listed in Table 8 with the dimension
of the basis matrices (“rows”) and their average bump size (“bump”).

For each basis matrix B in the sequence, BASICLU had to solve the forward and backward
systems

Bx = a, BTy = ej ,

where a was the vector that would replace column j of B. The routine solve for update was
used, which performs the linear system solve and stores the spike or row eta in preparation for
the update. To obtain results for the pure FT update, the triangularity test in Algorithm 11
was simply skipped. In both cases the refactorization frequency was chosen as suggested by
BASICLU, which measures the cost of operations with the accumulated row eta matrices relative
to the cost of the last factorization. Refactorization due to numerical instability was ignored
because there should be no difference between the permuted update and the FT update.

The fraction of updates that could be permuted (symmetrically permuted) to triangular
form is given in column “perm (sym)” of Table 8. The following two block columns show the
number of factorizations (nf), factorization time (tf), solve time (ts) and update time (tu) (in
seconds) for the combined update and the pure FT update. The last column shows the ratio of
the total computation time using the combined update to that of the FT update; a value < 1
means that the combined update was faster.

Unsurprisingly, there is a clear correlation between the fraction of updates that could be
permuted and a small bump size. This makes the permutation method particularly relevant
for large-scale LP problems, where the bump is typically a small part of the basis matrix. It
is also seen that unsymmetric permutations occur frequently, disqualifying the idea to exploit
only symmetric permutations, which would allow a much simpler implementation.

A more visible illustration of the results is given in Figure 10. In both plots the abscissa holds
the fraction of updates that could be permuted and each cross represents an LP model, with
its ordinate as the problem dimension (upper plot) or the ratio from the last column of Table 8

84

(lower plot). For all of the large-scale problems (say m > 105) more than 80% of the updates
could be permuted. In these cases the reduction of the computation time ranged between 25%
and 70%. If only a minor fraction of updates could be permuted, the triangularity test caused
up to 5% overhead. The latter figure should be considered with care, however, because in this
case our implementation of the FT update is not efficient. Here better performance could be
achieved by storing the factors with permuted indices, since then data structures are traversed
in memory order during forward and backward substitution. Such an implementation is not
possible in combination with the update by permutation, because an unsymmetric permutation
changes the row–column mappings defined by the pivot elements (pmap and qmap above).

85

name rows bump perm (sym) combined Forrest-Tomlin ratio
nf tf ts tu nf tf ts tu

cre-b 9648 137 0.94 (0.04) 34 0.04 0.21 0.03 49 0.05 0.31 0.02 0.74
dano3mip lp 3202 1116 0.28 (0.01) 223 0.48 3.03 0.15 223 0.48 3.06 0.08 1.02
dcp2 32388 3331 0.41 (0.34) 39 0.33 1.57 0.06 41 0.34 1.66 0.05 0.96
dfl001 6071 2319 0.53 (0.16) 103 0.32 3.54 0.09 108 0.32 3.62 0.05 0.99
fome12 24284 9201 0.52 (0.15) 237 3.18 19.60 0.49 246 3.16 20.46 0.25 0.97
gen4 1537 243 0.02 (0.01) 7 0.13 0.40 0.05 7 0.14 0.41 0.02 1.05
ken-18 105127 5 0.99 (0.72) 14 0.26 0.84 0.24 143 2.42 2.25 0.08 0.28
l30 2701 2299 0.04 (0.03) 102 0.51 1.83 0.13 102 0.52 1.83 0.04 1.03
lp22 2958 1381 0.17 (0.06) 143 0.79 2.59 0.21 144 0.81 2.53 0.07 1.06
maros-r7 3136 765 0.38 (0.29) 31 0.10 0.37 0.03 36 0.11 0.38 0.02 0.98
mod2 34774 2841 0.67 (0.28) 118 0.88 11.30 0.19 123 0.85 12.12 0.09 0.95
ns1688926 32768 70 0.51 (0.48) 18 0.29 6.49 0.21 18 0.29 6.43 1.33 0.87
osa-60 10280 4 0.96 (0.02) 16 0.01 0.15 0.01 23 0.02 0.31 0.04 0.49
pds-20 33874 146 0.97 (0.42) 21 0.08 0.45 0.06 76 0.24 0.56 0.02 0.73
pds-40 66844 536 0.96 (0.42) 50 0.49 3.11 0.23 152 1.24 4.05 0.07 0.71
pds-100 156243 654 0.97 (0.41) 90 2.32 8.72 0.91 337 7.31 10.80 0.20 0.65
pilot87 2030 991 0.13 (0.10) 84 0.89 2.10 0.24 84 0.88 2.12 0.22 1.01
qap12 3192 2708 0.05 (0.00) 1170 29.70 60.53 5.41 1176 30.39 62.30 1.86 1.01
self 960 790 0.02 (0.01) 136 13.68 4.40 0.94 138 14.08 4.96 1.04 0.95
sgpf5y6 246077 275 0.99 (0.17) 38 1.57 2.41 0.40 182 6.69 6.92 0.15 0.32
stat96v1 5995 4875 0.14 (0.13) 99 0.63 4.68 0.13 100 0.62 4.60 0.06 1.03
stat96v4 3173 2764 0.19 (0.18) 333 2.26 9.23 0.36 335 2.27 9.23 0.26 1.01
stormg2-125 66185 529 0.94 (0.26) 45 0.44 0.42 0.08 103 0.98 0.86 0.05 0.50
stormg2 1000 528185 3646 0.95 (0.22) 127 14.78 18.34 1.01 308 33.39 31.61 0.70 0.52
stp3d 159488 3302 0.84 (0.31) 120 3.26 45.10 0.74 129 3.26 53.10 0.43 0.86
truss 1000 700 0.29 (0.10) 181 0.11 0.47 0.04 186 0.12 0.46 0.03 1.02
watson 1 201155 1904 0.93 (0.53) 114 4.28 2.62 0.22 156 5.67 4.67 0.18 0.68
watson 2 352013 2575 0.94 (0.58) 129 8.71 4.36 0.32 176 11.37 8.04 0.26 0.68
world 34506 2467 0.70 (0.28) 127 0.86 10.23 0.17 134 0.86 11.77 0.10 0.89

Table 8: Comparison of LU update methods.

86

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fraction permuted

10 3

10 4

10 5

10 6
b

a
s
is

 d
im

e
n

s
io

n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fraction permuted

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ti
m

e
 r

a
ti
o

Figure 10: Visualization of data from Table 8.

87

8 Computational Results

The goal of this chapter is to provide a comprehensive comparison of the newly developed LP
solver to the current state-of-the-art. In the first part the performance and robustness of IPX
are evaluated on a diverse set of LP models, using a Cholesky-based IPM and a dual simplex
as reference. In the second part the advantage of the new approach on two specific problem
classes is discussed.

8.1 Test Environment

The computational results were obtained from IPX version 1.0, which was the code version at
the time of submitting this thesis. BASICLU version 2.0 was used for the basis factorizations
and updates. Both packages are publicly available from https://www.maths.ed.ac.uk/ERGO/

software.html. For comparison the interior point (“barrier”) and dual simplex solver of the
commercial software Gurobi [32] version 7.0 were used.

The tests were run on a desktop computer with an Intel i5-6500 CPU (4 cores, 3.2GHz, 6MB
L3 cache) and 8GB physical memory. While it is clear that the Cholesky factorization would
have benefitted from hardware with higher floating point capability more than the iterative
method, the setup was chosen because it is frequently used by practitioners. IPX and BASICLU
were compiled with GCC version 4.8.5 and optimization flag -O2. IPX requires the LAPACK
[48] routines dpotrf and dpotrs for the dense Cholesky factorization and solves, which were
used with the OpenBLAS library [63].

8.2 A Diverse Problem Set

To compose a test set that represents a wide range of applications, all LP models from the
sources listed in Appendix A were collected. For the mixed-integer problems the canonical LP
relaxation was built, and a presolved version was generated for each model by the Gurobi LP
presolve. Instances for which the resulting m̄× n̄ constraint matrix was such that min(m̄, n̄) ≤
1000 were removed, because for these models the normal equations (possibly after dualization)
can be solved efficiently by dense linear algebra routines.

Both interior point solvers were then applied with default parameters and a time limit of
36, 000 seconds. IPX was run on the presolved models, whereas Gurobi was given the original
models and its presolve time was subtracted from its total runtime. Infeasible and unbounded
models, as well as models for which the Cholesky factorization required more than the 8GB
physical memory were removed from the set. Models were also removed if they were solved by
both methods within 1 second. The test set was finally cleaned by keeping only 1 or 2 instances
of the same model (for example, from the 12 pds instances only pds-60 and pds-100 were
kept). The resulting set contained 170 LP models that are listed with their solution times in
Appendix A. An overview of their dimensions is given in Table 9.

IPX does not provide a simplex implementation for cleaning up the basic solution after the
crossover push phases. For the study the final basis was used as starting basis for the Gurobi
primal or dual simplex, depending on which infeasibility was smaller. In 150 cases Gurobi
decided the initial solution to be optimal within its default tolerances. In 15 cases a simplex
run was necessary and the time was added to the total IPX runtime.

All models in the test set were solved by either IPX or Gurobi barrier to basic solution.
The Gurobi crossover reached time limit on 1 instance (nug30), whereas the IPX interior point
method failed on 5 instances:

• On stormg2 1000, ns2122603 and ns1688926 the IPM stopped after no progress was
achieved over a number of iterations. The issue seems to be solvable by a refined IPM

88

min(m̄, n̄) instances
1,036–2,499 16
2,500–4,999 17
5,000–9,999 27

10,000–24,999 41
25,000–49,999 31
50,000–99,999 11

100,000–249,999 19
250,000–499,999 4
500,000–999,999 3

1,000,000–1,439,571 1

Table 9: Row and column dimensions (m̄, n̄) of 170 test problems after presolve.

subset instances IPX/Gurobi IPX faster Gurobi faster
>1s 164 3.67 22 142
>10s 89 3.94 16 73
>100s 41 6.29 6 35
>1s 102 4.93 7 95
>10s 59 5.85 7 52
>100s 35 7.95 4 31

Table 10: Runtime comparison on LP models that were solved by IPX and Gurobi barrier.
The lower half excludes models for which the Gurobi dual simplex was faster than the Gurobi
barrier.

implementation (for example using centrality correctors or a more conservative choice of
step sizes). The models are questionable numerically, however, due to a wide range of
entries in the problem data.

• On cont1 l and cont11 l the initial LU factorization ran out of memory. It turned
out that the large fill-in was caused by the default pivot tolerance of 0.0625 being too
small. For the related but smaller instances cont1 and cont11 IPX detected the initial
LU factorization to be unstable and tightened the pivot tolerance to 0.3. In the repeated
factorization the fill-in decreased by about a factor 4. After setting the initial LU pivot
tolerance to 0.3, cont1 l was solved to an optimal basic solution in 3155 seconds (Gurobi
required 1951 seconds); cont11 l reached time limit after 3 interior point iterations with
basis preconditioning.

In the upper half of Table 10 the runtimes of IPX and Gurobi barrier are compared on the 164
models that were solved by both methods with default parameters. The column “IPX/Gurobi”
shows the geometric mean of the runtime ratios, a value >1.0 meaning that IPX was by that
factor slower. The subset “>10s” consists of the models for which at least one solver required
more than 10 seconds. The last subset should be considered with care because 41 instances are
insufficient to draw a conclusion. In the lower half of the table the comparison is repeated after
removing the 62 models for which the Gurobi dual simplex was faster than the Gurobi barrier.

The results prove the robustness of the method implemented in IPX. It solved the vast
majority of test problems and its average performance was in the same order of magnitude as
that of the Cholesky-based solver. For large instances, say m > 100, 000, the irregular memory
access of the basis updates and the iterative linear solver became decisive. Here the Cholesky
factorization often performed better as long as its floating point work was not excessive. This

89

10s 100s 1000s 10000s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 11: Fraction of total runtime spent for computing the crash basis (black bar at the
bottom), for updating the basis during the interior point solve (dark grey), for running the
linear solver (light grey), for crossover (black bar at the top) and for the remaining interior
point algorithm (white areas). The 87 LP models are ordered on the x-axis by total runtime.

explains the increase in the performance ratios toward higher solution times. By comparing
the two “>10s” subsets it is seen that about half of the models where IPX performed better
than Gurobi barrier were solved more efficiently by the dual simplex; yet there remain relevant
problems on which the new approach was superior to both conventional methods.

The breakdown of the total IPX runtime into different parts of the algorithm is illustrated
in Figure 11 for the 87 models that IPX solved successfully but took longer than 10 seconds.
Computing the starting basis was inexpensive except for cont1, where it accounted for one
third of the total time. Here the issue was the large fill-in in the first LU factorization before
tightening the pivot tolerance. On average 15% of the time for running the linear solver was
spent in the initial IPM iterations (not shown separately). Taking geometric means, preparing
the preconditioner and running the iterative solver accounted for 22% and 45% of the total time,
respectively. Crossover took 2% on average, but dominated the IPM runtime on 7 models.

8.3 Specific Problem Classes

The results from the previous section indicated that the method implemented in IPX can be
superior to both a Cholesky-based IPM and a dual simplex. Two LP models where this was
the case and where instances of different dimensions were available should be discussed.

The first example is a planning model from the petroleum industry that was formulated by
Alabi and Castro [5]. Table 11 provides the dimensions of the presolved models for 60, 120, 180,
240 and 300 planning days, and statistics from the three solvers. The models are hypersparse
and srd300 can be considered large-scale by today’s standards.

90

name m̄ n̄ nnz(Ā) Cholesky simplex IPX
srd060 93,200 178,510 2,796,210 400MB 198,614 70,150
srd120 186,440 357,070 9,804,510 1.5GB 411,601 139,966
srd180 279,680 535,630 21,024,810 3.0GB 667,702 207,292
srd240 372,920 714,190 36,457,110 5.0GB 957,958 296,348
srd300 466,160 892,750 56,101,410 8.0GB 1,182,170 366,304
nug12 2,794 8,771 33,443 16MB 35,033 1,995
nug15 5,698 22,230 85,425 60MB 168,806 6,334
nug20 14,098 72,546 281,906 300MB 563,761 14,128
nug30 52,260 379,350 1,567,800 4.0GB > 171, 866 30,759

Table 11: Dimensions of presolved models, factor size of the Gurobi Cholesky factorization,
iteration count of the Gurobi dual simplex, and number of basis updates in IPX with crossover.

name IPX Gurobi barrier simplex
total IPM basis total IPM basis

srd060 74.2 73.5 0.7 59.8 57.5 2.3 27.7
srd120 329.5 327.4 2.1 496.5 484.9 11.6 1048.3
srd180 891.4 886.8 4.6 1459.9 1435.8 24.1 3199.7
srd240 1883.3 1877.2 6.1 3615.5 3577.2 38.3 8483.8
srd300 3477.3 3467.1 10.2 t t 14465.7
nug12 2.4 2.2 0.2 0.6 0.5 0.2 16.4
nug15 15.1 13.3 1.8 4.0 2.8 1.2 238.5
nug20 192.3 176.1 16.1 435.5 37.5 398.0 3515.0
nug30 11473.2 5125.2 6348.0 t 1400.5 t t

Table 12: Computation times in seconds. “t” means 36,000 seconds time limit reached.

The second example are LP relaxations of quadratic assignment problems (QAPs), which are
commonly used for modelling facility location problems. The nug models in Table 11 originated
from the binary LP formulations of Resende et al. [67] of the facility location problems from
Nugent et al. [60] with 12, 15, 20 and 30 facilities. Although their dimensions are moderate,
the models are known to be challenging for both Cholesky factorization and simplex.

The solution times are given in Table 12. On the srd models, excluding the smallest one,
IPX was about 4 times faster than the dual simplex. This ratio is surprising because the
difference in the number of basis updates was only a factor 3 and we would have expected the
simplex to be more efficient in terms of time per basis update. The Gurobi barrier performed
somewhere between the other two solvers except for the largest instance, where the use of swap
memory degraded its floating point performance. The fill-in in the Cholesky factorization was
about a factor 10 in all cases.

On the nug models the number of dual simplex iterations and the time per iteration increased
rapidly with the problem dimension. This also applied for the simplex clean-up in the Gurobi
crossover. For nug30 Gurobi required about 3400 seconds for constructing a crossover starting
basis, followed by 12500 seconds for the push phases. The resulting basis was largely primal and
dual infeasible and the simplex clean-up reached time limit after 190, 000 iterations. The basis
returned by the IPX crossover was almost optimal and was cleaned up by the primal simplex in
1 iteration. On these models the ability of IPX to compute an interior solution that is close-to
complementary is decisive.

On both models and all instances IPX required roughly m̄ basis updates including crossover,
which is considerably smaller than the common 3m̄ target for the simplex.

91

9 Conclusions

The computational results demonstrated that the developed method is a robust, general-purpose
LP solver, that on average performs in the same order of magnitude as the best Cholesky-based
codes. To the author’s knowledge this was not achieved by previous approaches of iterative
linear algebra in IPMs. The key ingredients in the present work were the maximum volume
criterion for choosing a basis preconditioner and the update scheme for maintaining such a basis
at reasonable cost.

Regarding performance of the IPM, it is clear that the new approach is not a replacement
for direct linear algebra. On the majority of LP models from a diverse test set the Cholesky
factorization was faster, in particular for large-scale instances. However, there remained relevant
problems on which IPX performed better than a Cholesky-based IPM and a dual simplex. For
such applications the new solver is a true alternative to conventional methods. It might also be
the preferred method when memory resources are limited or on computing hardware with low
floating point capability. Its advantage over the simplex method is to require almost constantly
no more than m basis updates in the IPM, where m is the number of rows of the LP model.

Basis preconditioning offers an advantage over other linear algebra kernels in combination
with crossover. By eliminating degenerate variables during the interior point solve, it enables
computing highly accurate solutions, which can be dropped to complementarity without caus-
ing a large primal or dual residual. In most cases the crossover push phases then yield an
optimal basic solution. On the largest QAP model in our test set IPX was the only solver
capable of computing a basic solution in acceptable time. The technique can also be added to
conventional IPM implementations. Here, additional IPM iterations with basis preconditioning
can be performed conveniently after constructing a crossover starting basis but before executing
the push phases.

While the computational part of the thesis focussed on linear programming, the theoretical
discussions indicated that basis preconditioning is suitable for solving least squares problems
in general. Features like controlling the relative solution error, adding columns after an ini-
tial solve, detecting the numerical rank of a matrix (through a maximum volume basis) and
computing the minimum norm least squares solution make it attractive in areas like parameter
estimation and regression analysis. Because in these applications typically a single linear system
needs to be solved and there are no scaling factors involved, constructing a basis preconditioner
may require a different approach than in the IPM.

There are several questions about basis preconditioning in IPMs that deserve further inves-
tigation. During the development of IPX it was observed that different ρ-maximum volume
bases can lead to very different iteration counts of the linear solver. This was attributed to
sparsity in the tableau matrix. It seems possible to derive an algorithm for choosing the basis
such that the Frobenius norm of the scaled tableau matrix is minimum among all neighbouring
bases. This is likely to yield a sparse tableau, if it exists, and a more favourable spectrum of the
preconditioned matrix. The linear algebra operations would be more expensive than for finding
a maximum volume basis, but can still be economical, in particular for hypersparse problems.

Another question is extending the method to convex quadratic programming (QP) problems.
For a QP model the KKT matrix can have a non-diagonal (1, 1)-block, so that it cannot be
scaled to least squares form. Because direct factorization of the KKT matrix can be much more
expensive for QP than for LP models, developing a robust IPM with an iterative linear algebra
kernel would be an improvement for many practitioners.

92

A Test Set and Solution Times

The LP models have been obtained from the following sources:

(1) J. Castro: http://www-eio.upc.es/~jcastro/;
(a) huge CTA instances, (b) integrated refinery problems, (c) L1.zip, (d) Linf.zip

(2) J. A. J. Hall: http://www.maths.ed.ac.uk/hall/PublicLP/

(3) Kennington collection: http://www.netlib.org/lp/data/kennington/index.html

(4) C. Mészáros: http://old.sztaki.hu/~meszaros/public_ftp/lptestset/;
(a) misc, (b) New, (c) problematic, (d) stochlp

(5) MIPLIB 2010: http://miplib.zib.de/download/miplib2010-complete.tgz

(6) H. Mittelmann: http://plato.asu.edu/ftp/lptestset/;
(a) fome, (b) misc, (c) nug, (d) pds, (e) rail

(7) Netlib collection: http://www.netlib.org/lp/data/index.html

The following table lists the computation times in seconds, excluding presolve, obtained on
an Intel i5-6500 CPU (4 cores, 3.2GHz, 6MB L3 cache) and 8GB of physical memory. “simplex”
means the Gurobi dual simplex solver. m̄, n̄ and nnz are the row and column dimension and
the number of nonzero entries of the constraint matrix (without slack variables to inequality
constraints) after the Gurobi presolve.

93

src name m̄ n̄ nnz IPX Gurobi barrier simplex
total IPM push cleanup total IPM crossover

1a L1 sixm250obs 154168 308284 639901 180.1 176.5 3.6 43.5 42.1 1.4 179.8
1a L1 sixm500obs 283055 565680 1196860 553.8 506.0 47.8 471.8 468.7 3.1 803.0
1b srd120 186440 357070 9804510 329.5 327.4 2.1 496.5 484.9 11.6 1048.3
1b srd240 372920 714190 36457110 1883.3 1877.2 6.1 3615.5 3577.2 38.3 8483.8
1c L1 bts4 25611 69900 181413 5.7 5.6 0.1 1.4 1.3 0.2 0.8
1c L1 five20b 28342 62986 187981 47.4 47.2 0.1 6.5 3.7 2.8 251.9
1d Linf bts4 61465 70128 287954 11.1 10.8r 0.3 0.1 49.3 48.7 0.6 22.6
1d Linf five20b 60911 63458 285418 243.5 64.6r 16.3 162.6 25.1 10.8 14.3 1239.2
2 dcp2 13927 25376 281550 5.7 5.7r 0.0 0.7 0.6 0.1 1.5
3 cre-b 5213 31720 107039 2.3 2.3 0.0 0.4 0.4 0.1 0.6
3 ken-18 39855 89346 204936 5.5 5.5 0.1 1.3 1.1 0.1 1.1
3 osa-60 10209 224125 584253 5.7 5.6 0.1 1.1 1.0 0.1 0.5
4a bas1lp 5409 4443 582390 4.0 3.8 0.2 1.2 1.0 0.1 0.2
4a baxter 18867 10742 78412 2.5 2.4 0.1 1.9 1.9 0.1 0.3
4a co9 6784 10675 81809 2.1 2.1 0.0 0.4 0.3 0.1 2.3
4a dbic1 33598 140205 781668 58.4 46.7 11.7 12.0 2.8 9.2 23.3
4a dbir1 7150 24862 994828 17.3 16.3 1.0 1.6 1.4 0.2 0.1
4a e18 24598 14211 131991 12.6 12.3 0.2 63.2 63.1 0.2 1.0
4a ex3sta1 12602 12675 54377 3.5 3.4 0.0 0.4 0.2 0.2 10.0
4a jendrec1 2109 3535 88915 0.9 0.9 0.0 1.1 0.7r 0.4 0.4
4a lpl1 32427 82733 252587 21.9 21.4 0.5 4.1 1.8 2.3 5.1
4a mod2 23706 24005 114068 6.1 6.1 0.0 1.5 1.2 0.2 8.4
4a model10 2961 10373 94372 1.6 1.5 0.0 0.0 0.3 0.2 0.1 4.2
4a nemsemm1 2829 36052 495916 5.8 5.8 0.0 0.6 0.6 0.1 0.2
4a nl 5290 7997 36524 1.0 1.0 0.0 0.4 0.4 0.0 0.5
4a nsct1 7696 11297 589578 7.7 7.5 0.2 3.5 3.4 0.1 0.1
4a p010 8907 17770 60150 4.3 4.2 0.0 0.1 0.1 0.0 0.1
4a rat7a 2152 6772 156249 2.0 2.0 0.0 0.5 0.3 0.2 2.6
4a route 20779 23923 184576 2.4 2.3 0.1 0.4 0.4 0.1 0.1
4a stat96v1 4624 187892 562110 21.7 21.2r 0.4 0.1 20.8 4.9r 15.8 22.5
4a stat96v3 26274 1090091 3250147 1423.9 470.1r 14.0 939.9 8063.5 5.2r 8058.3 7116.0
4a ulevimin 4594 41225 135479 3.9 3.9 0.0 0.6 0.5 0.1 4.7
4a world 23640 25839 114431 6.7 6.7 0.0 1.7 1.4 0.3 10.3
4b degme 185501 659415 8127528 2496.8 2495.9 0.9 166.4 79.8 86.6 t
4b karted 46501 133114 1770336 499.6 499.4 0.2 144.9 27.2 117.7 t
4b tp-6 142752 1014301 11537419 2820.9 2820.0 0.8 66.0 42.0 24.0 t
4b ts-palko 22002 47235 1076903 314.7 314.5 0.2 79.2 8.6 70.6 14865.8
4c gen4 1475 4173 104236 12.3 11.8r 0.5 1.8 0.5 1.3 0.3
4c l30 2698 15360 51093 1.8 1.6 0.1 0.1 4.0 0.8 3.2 2.8
4d fxm3 16 32946 57391 315606 7.2 7.2 0.1 0.9 0.8 0.2 1.2
4d pltexpa4 6 13693 24221 70946 3.0 3.0 0.1 1.3 1.2 0.1 0.2

94

src name m̄ n̄ nnz IPX Gurobi barrier simplex
total IPM push cleanup total IPM crossover

4d scfxm1-2r-256 25922 45663 158006 8.1 8.1 0.1 1.6 1.0 0.5 2.5
4d stormg2-125 47536 129869 358498 28.3 28.1 0.2 2.9 2.5 0.4 1.2
4d stormg2 1000 380036 1038119 2865373 f 29.3 24.1 5.2 53.1
5 30 70 45 095 100 12515 10967 46614 2.4 1.0 1.5 1.2 0.3 0.9 1.4
5 app1-2 52261 26265 194705 4.5 4.4 0.1 1.0 0.9 0.2 1.3
5 atlanta-ip 19835 17484 182879 10.2 10.0 0.2 4.8 4.5 0.3 6.5
5 bab3 22478 393457 3097799 120.1 119.8 0.3 6.2 5.9 0.3 125.0
5 bley xl1 175178 5724 867393 10.4 7.8 2.6 13.5 13.2 0.3 14.1
5 buildingenergy 225031 128695 683844 262.5 260.5 2.0 6.1 5.7 0.5 7.9
5 circ10-3 42620 2700 307320 1.2 1.0 0.3 0.6 0.4 0.2 0.8
5 core4872-1529 4607 24098 184762 4.2 4.1 0.1 1.6 1.3 0.3 27.0
5 dano3mip 3150 13837 79530 1.7 1.7 0.0 1.1 0.9 0.1 4.8
5 datt256 9863 196147 1124622 1218.3 158.1 1060.2 718.3 1.0 717.3 308.7
5 dc1l 1650 35496 424338 5.9 5.8 0.1 1.1 1.0 0.1 5.8
5 dolom1 1802 10825 176976 2.4 2.4 0.0 0.6 0.5 0.0 2.6
5 ds-big 1042 173029 4573582 196.9 195.4 1.6 6.0 5.0 1.0 195.7
5 ex10 62932 15896 1031940 38.7 12.9 25.8 121.8 114.4 7.4 141.4
5 f2000 10495 3995 29490 3.6 2.3 1.3 2.8 0.9 1.9 46.5
5 germanrr 5524 10650 159548 2.0 1.9 0.0 0.0 0.3 0.3 0.0 0.2
5 gmut-75-50 2499 35915 569806 6.0 5.9 0.0 0.0 0.8 0.7 0.1 0.8
5 in 1495549 1439571 6696217 5381.1 4622.9 758.2 101.2 82.7 18.4 t
5 ivu06-big 1177 2197774 22556378 2067.8 2064.9 2.9 34.3 30.7 3.6 179.5
5 ivu52 2116 157543 2178871 69.2 68.4 0.8 3.5 3.2 0.3 30.9
5 map06 37504 18973 81653 11.3 11.2 0.1 3.5 3.2 0.3 2.2
5 mining 661094 348958 2754430 772.0 770.0 2.0 46.6 36.8 9.8 2253.4
5 momentum3 56421 13334 566199 25.7 25.6 0.2 22.1 18.0 4.0 18.2
5 msc98-ip 15293 12823 81666 4.1 3.6 0.3 0.2 3.0 2.6 0.4 1.1
5 mspp16 524814 4081 27555511 65.3 65.0 0.3 57.4 52.7 4.7 3.6
5 mzzv11 9316 9902 133424 2.3 2.1 0.2 1.6 1.5r 0.1 1.1
5 n15-3 28860 153140 575246 19.0 18.6 0.3 2.4 2.1 0.3 9.6
5 n3seq24 5950 119856 2404844 27.0 26.5 0.5 4.1 3.7 0.3 1.9
5 nb10tb 94742 49744 802185 92.8 78.2 0.6 14.0 53.6 41.9 11.7 115.7
5 neos-1140050 3795 39075 806835 6.8 6.8 0.0 3.9 3.3 0.6 16.3
5 neos-1429212 29416 64404 1222493 34.1 31.4 2.6 3.3 1.9 1.4 3.1
5 neos-1605075 3464 4085 91314 1.3 0.9 0.3 1.0 0.9 0.1 1.3
5 neos-476283 4312 6528 3924503 23.8 23.3 0.5 20.0 19.8 0.3 0.6
5 neos-506428 129925 42981 343466 7.5 4.4 3.1 1.3 1.0 0.3 0.1
5 neos-520729 17391 64464 175131 12.1 11.8 0.3 0.4 0.3 0.1 4.4
5 neos-631710 169576 167056 834166 220.2 3.4 216.8 8.7 1.2 7.5 1350.3
5 neos-738098 25736 8981 100842 2.6 1.5 1.1 0.6 0.5 0.1 1.7
5 neos-799711 12660 11615 40152 1.4 1.3 0.1 0.5 0.4 0.1 0.1

95

src name m̄ n̄ nnz IPX Gurobi barrier simplex
total IPM push cleanup total IPM crossover

5 neos-824661 18804 29920 122230 2.0 1.7 0.3 0.3 0.2 0.1 0.2
5 neos-826694 6730 15210 52020 1.2 0.8 0.3 0.2 0.1 0.1 0.2
5 neos-933638 9642 8887 54484 1.9 1.1 0.9 0.6 0.4 0.3 5.1
5 neos-941313 13099 116670 386400 8.4 6.9 1.6 1.1 0.4 0.7 23.2
5 neos-948126 7208 7777 37891 1.6 1.1 0.5 0.4 0.2 0.2 12.6
5 neos-957389 5114 6034 355369 4.4 4.3 0.1 0.6 0.5 0.1 0.1
5 neos-984165 6921 7315 36573 1.7 1.2 0.5 0.4 0.2 0.2 10.2
5 neos6 1036 8563 251723 1.1 1.1 0.0 0.5 0.4 0.0 0.1
5 neos808444 17729 19330 119357 2.8 1.2 1.6 0.6 0.4 0.3 0.2
5 net12 13975 14115 80108 2.8 2.8 0.0 4.4 4.4 0.1 0.3
5 netdiversion 99581 128968 495878 110.3 105.2 5.1 14.4 4.2 10.3 3.5
5 npmv07 60835 162180 378798 23.1 22.9 0.2 3.7 3.5 0.2 0.6
5 ns1111636 13453 76462 283284 5.3 5.1 0.2 0.5 0.4 0.1 1.5
5 ns1116954 131865 11928 409850 7.0 2.1 4.9 12.2 11.7 0.5 5.7
5 ns1631475 24074 22485 100023 4.6 4.4 0.3 1.0 0.6 0.5 16.4
5 ns1644855 30597 30199 2100495 49.5 48.0 1.6 131.6 131.2 0.5 55.4
5 ns1663818 167047 123027 20177986 1105.0 1077.8r 27.3 208.3 197.3r 10.9 1.3
5 ns1685374 43195 9174 206101 9.9 9.9 0.0 11.9 1.6 10.4 161.8
5 ns1696083 10513 7748 371757 4.9 4.9 0.1 1.7 1.6 0.1 0.0
5 ns1758913 615190 17824 1265492 26.2 19.6 6.6 21.0 3.9 17.1 5.5
5 ns1853823 223144 213176 1346924 492.6 473.3 19.3 32.7 20.8r 11.9 2333.3
5 ns1854840 143236 135754 844834 136.5 124.1 12.4 6.2 4.7 1.6 1935.7
5 ns1904248 146398 38262 371070 6.6 1.7 4.9 0.8 0.7 0.2 25.6
5 ns1905797 51876 18188 239156 1.6 1.4 0.1 11.4 11.3 0.1 0.3
5 ns2017839 49884 53364 298482 20.1 20.1 0.1 0.0 7.3 3.2r 4.1 3.8
5 ns2118727 160408 164350 636614 42.0 41.9 0.1 13.8 13.5 0.3 41.4
5 ns2122603 19036 16556 64357 f 4.5 1.6 2.9 1.2
5 ns2124243 32277 48893 192513 4.8 4.4 0.4 0.6 0.3 0.3 4.5
5 ns2137859 99385 99462 593332 11.6 11.4 0.2 2.7 2.1 0.5 0.4
5 ns894244 9479 16399 68362 3.1 2.6 0.5 0.8 0.6 0.2 11.5
5 ns930473 22846 33136 139974 7.2 6.8 0.4 1.1 0.8 0.4 0.7
5 nsr8k 6283 38264 370206 16.8 16.4 0.4 4.7 3.9 0.7 133.1
5 ofi 105107 222217 848037 135.5 134.7 0.8 0.1 29.0 28.5 0.5 45.5
5 opm2-z11-s8 205936 7653 473063 19.4 10.9 8.6 22.4 15.0 7.4 29.2
5 opm2-z12-s7 297892 10336 678441 44.4 20.4 23.9 37.8 23.2 14.6 59.6
5 pb-simp-nonunif 123532 11798 298082 1.3 1.0 0.3 1.3 0.7 0.5 6.9
5 rail02 54524 192618 599436 71.0 62.3 8.6 45.2 42.0 3.2 685.1
5 rail03 129647 567095 1349518 399.2 318.7 80.5 55.4 48.6 6.8 1160.7
5 ramos3 2187 2187 32805 4.6 1.0 3.6 4.4 0.3 4.1 23.2
5 reblock420 62800 4200 138670 1.9 1.2 0.8 0.8 0.6 0.3 2.2
5 rmatr100-p5 8685 8784 26152 3.9 3.8 0.0 9.1 9.1 0.0 0.3

96

src name m̄ n̄ nnz IPX Gurobi barrier simplex
total IPM push cleanup total IPM crossover

5 rmatr200-p5 37617 37816 113048 56.5 55.7 0.8 1.3 1.2 0.1 3.5
5 rmine14 268474 32144 659980 83.0 80.4 2.6 48.6 20.8 27.8 508.0
5 rmine21 1441506 162402 3514014 2707.8 2580.2 127.7 1620.0 694.8 925.2 t
5 rocII-9-11 42412 20557 503343 6.6 6.3 0.3 1.1 0.7 0.3 0.1
5 satellites3-40-fs 28171 54578 199798 22.0 14.7 7.4 6.2 3.1 3.1 7.5
5 satellites3-40 37422 54578 588630 34.4 25.4 9.0 61.2 56.6 4.6 2.0
5 sct1 9171 14514 85676 4.2 4.1 0.1 1.3 1.2 0.1 1.9
5 shs1023 126657 432068 1013029 173.5 170.8 2.7 14.4 12.8 1.6 128.0
5 siena1 2211 13482 254310 3.9 3.8 0.1 1.1 1.0 0.1 8.0
5 sing161 150806 464036 1459828 281.9 273.6 8.3 13.6 12.1 1.5 296.0
5 sing359 153253 428748 1408257 268.7 258.4 10.3 11.9 10.1 1.8 235.4
5 sp97ar 1692 14100 281317 1.4 1.4 0.0 0.2 0.2 0.0 0.2
5 splan1 521819 1253087 5088694 5242.2 4989.8 250.4 1.9 1775.7 1587.6 188.1 t
5 stockholm 36517 16622 111003 5.6 5.5 0.1 0.7 0.6 0.1 0.8
5 stp3d 97936 137646 500753 196.5 163.4 33.1 11.2 9.4 1.8 138.2
5 tanglegram1 68210 34501 204158 7.3 5.8 1.5 7.7 0.3 7.4 0.1
5 triptim3 14121 22982 494503 14.2 13.3 0.9 5.3 4.8 0.5 280.6
5 uc-case3 34288 27194 230068 7.2 7.0 0.2 1.1 0.9 0.2 0.8
5 unitcal 7 43301 25767 109859 12.5 12.1 0.4 1.1 0.9 0.2 0.3
5 van 22016 7360 481408 2.7 2.7 0.0 7.5 7.3 0.1 1.9
5 vpphard 39140 43395 332904 8.2 7.2 1.0 3.7 3.4 0.3 1.0
5 vpphard2 136399 139234 561958 26.2 25.8 0.4 36.6 36.3 0.3 0.8
5 wnq-n100-mw99-14 656900 10000 1333400 20.3 20.0 0.2 39.4 39.0 0.3 1.7
6a fome13 34600 76249 246895 40.5 36.0 4.5 5.8 4.6 1.2 78.3
6a fome21 24173 162336 356706 15.5 15.0 0.5 3.5 3.1 0.4 2.6
6b cont1 120395 40398 359593 88.5 88.4 0.1 18.8 2.0 16.8 85.5
6b cont11 120395 80396 359593 668.6 641.7 4.8 22.1 250.0 1.9 248.1 1120.3
6b cont11 l 1468599 981396 4403001 m 3256.3 32.1 3224.2 t
6b cont1 l 1918399 641598 5752001 m 1951.3 50.3 1900.9 t
6b neos 419478 41140 911651 118.8 118.6 0.2 8.1 7.8 0.3 10.7
6b neos1 131581 1892 468009 7.9 7.8 0.1 1.4 1.3 0.1 3.9
6b neos3 512209 6624 1542816 60.9 27.4 33.5 38.6 11.4 27.2 16.1
6b ns1687037 36080 30955 1377655 145.8 145.8 0.1 24.5 15.4 9.1 778.1
6b ns1688926 24576 16489 901120 f 28.9 22.5r 6.4 7.4
6b sgpf5y6 19499 39020 109247 3.4 3.3 0.1 1.7 1.4 0.3 0.2
6b watson 1 107522 216565 658933 85.7 85.2 0.5 4.5 3.3 1.3 7.2
6b watson 2 185474 378986 1040238 193.8 192.7 1.1 6.5 3.5 3.0 12.4
6c nug08-3rd 18270 20448 128547 573.8 253.8 320.1 91.2 18.8 72.4 330.9
6c nug20 14098 72546 281906 192.3 176.1 16.1 435.4 37.5 398.0 3515.0
6c nug30 52260 379350 1567800 11473.2 5125.2 6337.0 11.1 Inf 1400.5 Inf t
6d pds-100 94994 433867 933313 110.6 104.9 5.7 30.9 28.1 2.7 15.4

97

src name m̄ n̄ nnz IPX Gurobi barrier simplex
total IPM push cleanup total IPM crossover

6d pds-60 54289 285112 617497 39.5 37.7 1.8 16.5 15.4 1.1 10.1
6e rail2586 2463 909940 7901059 259.0 258.6 0.4 15.3 12.7 2.7 19.9
6e rail4284 4176 1090526 11174639 370.7 369.9 0.8 32.9 29.7 3.2 34.2
7 dfl001 4325 9511 30833 2.2 2.0 0.1 0.6 0.5 0.1 5.7
7 pilot87 1815 4420 70035 1.6 1.6 0.0 0.4 0.3 0.2 3.7
7 qap15 5698 22218 85413 15.4 13.3 2.1 4.3 2.8 1.5 361.1

f: failed, t: time limit, r: IPM solution reported not optimal

98

References

[1] T. Achterberg. Exploiting degeneracy in MIP. http://www.iasi.cnr.it/aussois/web/

uploads/2018/slides/achterbergt.pdf. Accessed: Sep 13, 2018.

[2] G. Al-Jeiroudi. On inexact Newton directions in interior point methods for linear opti-
mization. PhD thesis, University of Edinburgh, 2009.

[3] G. Al-Jeiroudi and J. Gondzio. Convergence analysis of the inexact infeasible interior-point
method for linear optimization. J. Optim. Theory Appl., 141(2):231–247, 2009.

[4] G. Al-Jeiroudi, J. Gondzio, and J. A. J. Hall. Preconditioning indefinite systems in interior
point methods for large scale linear optimisation. Optim. Methods Softw., 23(3):345–363,
2008.

[5] A. Alabi and J. Castro. Dantzig-Wolfe and block coordinate-descent decomposition in
large-scale integrated refinery-planning. Comput. Oper. Res., 36(8):2472–2483, 2009.

[6] E. D. Andersen, J. Gondzio, C. Mészáros, and X. Xu. Implementation of interior-point
methods for large scale linear programs. In Interior point methods of mathematical pro-
gramming, volume 5 of Appl. Optim., pages 189–252. Kluwer Acad. Publ., Dordrecht, 1996.

[7] M. Arioli and I. S. Duff. Preconditioning linear least-squares problems by identifying a
basis matrix. SIAM J. Sci. Comput., 37(5):S544–S561, 2015.

[8] A. Ben-Israel. A volume associated with m×n matrices. Linear Algebra Appl., 167:87–111,
1992.

[9] A. Ben-Israel and T. N. E. Greville. Generalized inverses, volume 15 of CMS Books in
Mathematics/Ouvrages de Mathématiques de la SMC. Springer-Verlag, New York, second
edition, 2003.

[10] R. E. Bixby and M. J. Saltzman. Recovering an optimal LP basis from an interior point
solution. Oper. Res. Lett., 15(4):169–178, 1994.

[11] COIN-OR Utils. https://projects.coin-or.org/CoinUtils. Accessed: Feb 10, 2017.

[12] IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/us-en/marketplace/

ibm-ilog-cplex. Accessed: Jun 23, 2017.

[13] T. A. Davis. Direct methods for sparse linear systems, volume 2 of Fundamentals of Algo-
rithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006.

[14] T. A. Davis and W. W. Hager. Row modifications of a sparse Cholesky factorization.
SIAM J. Matrix Anal. Appl., 26(3):621–639, 2005.

[15] I. S. Duff. On algorithms for obtaining a maximum transversal. ACM Trans. Math. Softw.,
7(3):315–330, September 1981.

[16] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices. Numeri-
cal Mathematics and Scientific Computation. Oxford University Press, New York, second
edition, 2017.

[17] R. Fletcher and S. P. J. Matthews. Stable modification of explicit LU factors for simplex
updates. Math. Programming, 30(3):267–284, 1984.

99

[18] J. J. H. Forrest and J. A. Tomlin. Updated triangular factors of the basis to maintain
sparsity in the product form simplex method. Math. Programming, 2:263–278, 1972.

[19] L. Foster. San Jose State University singular matrix database. http://www.math.sjsu.

edu/singular/matrices/. Accessed: Jan 17, 2018.

[20] R. Fukasawa and L. Poirrier. Permutations in the factorization of simplex bases. http:

//www.optimization-online.org/DB_HTML/2016/12/5770.html. submitted Dec 13,
2016; accessed May 8, 2017.

[21] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to arithmetic
operations. SIAM J. Sci. Statist. Comput., 9(5):862–874, 1988.

[22] A. J. Goldman and A. W. Tucker. Theory of linear programming. In H. W. Kuhn and
A. W. Tucker, editors, Linear Inequalities and Related Systems, volume 38 of Annals of
Mathematics Studies, pages 53–98. Princeton University Press, Princeton, NJ, 1956.

[23] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition,
1996.

[24] J. Gondzio. Multiple centrality corrections in a primal-dual method for linear programming.
Comput. Optim. Appl., 6(2):137–156, 1996.

[25] J. Gondzio. Convergence analysis of an inexact feasible interior point method for convex
quadratic programming. SIAM J. Optim., 23(3):1510–1527, 2013.

[26] Z. Gong, M. Aldeen, and L. Elsner. A note on a generalized Cramer’s rule. Linear Algebra
Appl., 340:253–254, 2002.

[27] C. C. Gonzaga. Path-following methods for linear programming. SIAM Rev., 34(2):167–
224, 1992.

[28] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L. Za-
marashkin. How to find a good submatrix. In Matrix methods: theory, algorithms and
applications, pages 247–256. World Sci. Publ., Hackensack, NJ, 2010.

[29] S. A. Goreinov and E. E. Tyrtyshnikov. The maximal-volume concept in approximation
by low-rank matrices. In Structured matrices in mathematics, computer science, and engi-
neering, I (Boulder, CO, 1999), volume 280 of Contemp. Math., pages 47–51. Amer. Math.
Soc., Providence, RI, 2001.

[30] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. Else-
vier/Academic Press, Amsterdam, seventh edition, 2007.

[31] M. Gu and S. C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR
factorization. SIAM J. Sci. Comput., 17(4):848–869, 1996.

[32] Gurobi Optimization. http://www.gurobi.com. Accessed: Jan 24, 2017.

[33] J. A. J. Hall and K. I. M. McKinnon. Hyper-sparsity in the revised simplex method and
how to exploit it. Comput. Optim. Appl., 32(3):259–283, 2005.

[34] P. M. J. Harris. Pivot selection methods of the Devex LP code. Math. Programming,
5:1–28, 1973.

100

[35] N. J. Higham and S. D. Relton. Estimating the largest elements of a matrix. SIAM J. Sci.
Comput., 38(5):C584–C601, 2016.

[36] Y. P. Hong and C.-T. Pan. Rank-revealing QR factorizations and the singular value
decomposition. Math. Comp., 58(197):213–232, 1992.

[37] Q. Huangfu. High performance simplex solver. PhD thesis, University of Edinburgh, 2013.

[38] Q. Huangfu and J. A. J. Hall. Novel update techniques for the revised simplex method.
Comput. Optim. Appl., 60(3):587–608, 2015.

[39] C. H. Hung and T. L. Markham. The Moore-Penrose inverse of a partitioned matrix
M = (AB

D
C). Linear Algebra and Appl., 11:73–86, 1975.

[40] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4(4):373–395, 1984.

[41] P. A. Knight, D. Ruiz, and B. Uçar. A symmetry preserving algorithm for matrix scaling.
SIAM J. Matrix Anal. Appl., 35(3):931–955, 2014.

[42] D. E. Knuth. Semioptimal bases for linear dependencies. Linear and Multilinear Algebra,
17(1):1–4, 1985.

[43] A. Koberstein. The Dual Simplex Method, Techniques for a fast and stable implementation.
PhD thesis, Paderborn University, 2005.

[44] M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-point algorithm
for linear programming. Math. Programming, 61(3, Ser. A):263–280, 1993.

[45] M. Kojima, S. Mizuno, and A. Yoshise. A polynomial-time algorithm for a class of linear
complementarity problems. Math. Programming, 44(1, (Ser. A)):1–26, 1989.

[46] M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for linear
programming. In N. Megiddo, editor, Progress in Mathematical Programming: Interior-
Point and Related Methods, chapter 2, pages 29–47. Springer, New York, NY, 1989.

[47] M. Kojima, S. Mizuno, and A. Yoshise. An O(
√
nL) iteration potential reduction algorithm

for linear complementarity problems. Math. Programming, 50(3, (Ser. A)):331–342, 1991.

[48] LAPACK. http://www.netlib.org/lapack/. Accessed: Sep 2, 2018.

[49] M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu. Parallel distributed-memory simplex
for large-scale stochastic LP problems. Comput. Optim. Appl., 55(3):571–596, 2013.

[50] D. G. Luenberger. The conjugate residual method for constrained minimization problems.
SIAM J. Numer. Anal., 7:390–398, 1970.

[51] N. Megiddo. Pathways to the optimal set in linear programming. In N. Megiddo, editor,
Progress in Mathematical Programming: Interior-Point and Related Methods, chapter 8,
pages 131–158. Springer, New York, NY, 1989.

[52] N. Megiddo. On finding primal- and dual-optimal bases. ORSA J. Comput., 3(1):63–65,
1991.

[53] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM J.
Optim., 2(4):575–601, 1992.

101

[54] S. Mizuno and F. Jarre. Global and polynomial-time convergence of an infeasible-interior-
point algorithm using inexact computation. Math. Program., 84(1, Ser. A):105–122, 1999.

[55] S. Mizuno, M. Kojima, and M. J. Todd. Infeasible-interior-point primal-dual potential-
reduction algorithms for linear programming. SIAM J. Optim., 5(1):52–67, 1995.

[56] R. D. C. Monteiro and I. Adler. Interior path following primal-dual algorithms. part I:
Linear programming. Math. Programming, 44(1, (Ser. A)):27–41, 1989.

[57] R. D. C. Monteiro and J. W. O’Neal. Convergence analysis of a long-step primal-dual
infeasible interior-point LP algorithm based on iterative linear solvers. Technical report,
School of ISyE, Georgia Tech, USA, 2003.

[58] R. D. C. Monteiro, J. W. O’Neal, and T. Tsuchiya. Uniform boundedness of a precon-
ditioned normal matrix used in interior-point methods. SIAM J. Optim., 15(1):96–100,
2004.

[59] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations
Research and Financial Engineering. Springer, New York, second edition, 2006.

[60] C. E. Nugent, T. E. Vollman, and J. Ruml. An experimental comparison of techniques for
the assignment of facilities to locations. Oper. Res., 16:150–173, 1968.

[61] A. R. L. Oliveira. A New Class of Preconditioners for Large-Scale Linear Systems from
Interior Point Methods for Linear Programming. PhD thesis, Rice University, 1997.

[62] A. R. L. Oliveira and D. C. Sorensen. A new class of preconditioners for large-scale linear
systems from interior point methods for linear programming. Linear Algebra Appl., 394:1–
24, 2005.

[63] OpenBLAS. https://www.openblas.net/. Accessed: Sep 2, 2018.

[64] C.-T. Pan. On the existence and computation of rank-revealing LU factorizations. Linear
Algebra Appl., 316(1-3):199–222, 2000.

[65] C. H. Papadimitriou. The largest subdeterminant of a matrix. Bull. Soc. Math. Grèce
(N.S.), 25:95–105, 1984.

[66] G. Peters and J. H. Wilkinson. The least squares problem and pseudo-inverses. The
Computer Journal, 13:309–316, 1970.

[67] M. G. C. Resende, K. G. Ramakrishnan, and Z. Drezner. Computing lower bounds for the
quadratic assignment problem with an interior point algorithm for linear programming.
Oper. Res., 43(5):781–791, 1995.

[68] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, second edition, 2003.

[69] L. Schork and J. Gondzio. An inexact potential reduction method for linear programming.
Technical Report ERGO-16-005, University of Edinburgh, 2016.

[70] L. Schork and J. Gondzio. Maintaining a basis matrix in the linear programming interior
point method. Technical Report ERGO-17-009, University of Edinburgh, 2017.

[71] L. Schork and J. Gondzio. Permuting spiked matrices to triangular form and its application
to the Forrest-Tomlin update. Technical Report ERGO-17-002, University of Edinburgh,
2017.

102

[72] L. Schork and J. Gondzio. Implementation of an interior point method with basis precon-
ditioning. Technical Report ERGO-18-014, University of Edinburgh, 2018.

[73] L. Schork and J. Gondzio. Rank revealing Gaussian elimination by the maximum volume
concept. Technical Report ERGO-18-002, School of Mathematics, University of Edinburgh,
2018.

[74] U. H. Suhl and L. M. Suhl. Computing sparse LU factorizations for large-scale linear
programming bases. ORSA Journal on Computing, 2(4):325–335, 1990.

[75] K. Tanabe. Centered Newton method for mathematical programming. In System modelling
and optimization (Tokyo, 1987), volume 113 of Lect. Notes Control Inf. Sci., pages 197–
206. Springer, Berlin, 1988.

[76] R. A. Tapia, Y. Zhang, and Y. Ye. On the convergence of the iteration sequence in primal-
dual interior-point methods. Math. Programming, 68(2, Ser. A):141–154, 1995.

[77] M. J. Todd. Detecting infeasibility in infeasible-interior-point methods for optimization.
In Foundations of computational mathematics: Minneapolis, 2002, volume 312 of London
Math. Soc. Lecture Note Ser., pages 157–192. Cambridge Univ. Press, Cambridge, 2004.

[78] M. J. Todd and Y. Ye. A centered projective algorithm for linear programming. Math.
Oper. Res., 15(3):508–529, 1990.

[79] R. J. Vanderbei. Linear programming: foundations and extensions, volume 4 of Interna-
tional Series in Operations Research & Management Science. Kluwer Academic Publishers,
Boston, MA, 1996.

[80] S. J. Wright. Primal-dual interior-point methods. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1997.

[81] R. Wunderling. Paralleler und Objektorientierter Simplex. PhD thesis, Technical University
of Berlin, 1996.

103

	cover sheet
	schork2018

