864 research outputs found

    Suitability of carbon nanotubes grown by chemical vapor deposition for electrical devices

    Full text link
    Using carbon nanotubes (CNTs) produced by chemical vapor deposition, we have explored different strategies for the preparation of carbon nanotube devices suited for electrical and mechanical measurements. Though the target device is a single small diameter CNT, there is compelling evidence for bundling, both for CNTs grown over structured slits and on rigid supports. Whereas the bundling is substantial in the former case, individual single-wall CNTs (SWNTs) can be found in the latter. Our evidence stems from mechanical and electrical measurements on contacted tubes. Furthermore, we report on the fabrication of low-ohmic contacts to SWNTs. We compare Au, Ti and Pd contacts and find that Pd yields the best results.Comment: pdf including figures, see: http://www.unibas.ch/phys-meso/Research/Papers/2004/Suitability-CVD-tubes.pd

    Interference and Interaction in Multiwall Carbon Nanotubes

    Full text link
    We report equilibrium electric resistance R and tunneling spectroscopy dI/dV measurements obtained on single multiwall nanotubes contacted by four metallic Au fingers from above. At low temperature quantum interference phenomena dominate the magnetoresistance. The phase-coherence and elastic-scattering lengths are deduced. Because the latter is of order of the circumference of the nanotubes, transport is quasi-ballistic. This result is supported by a dI/dV spectrum which is in good agreement with the density-of-states (DOS) due to the one-dimensional subbands expected for a perfect single-wall tube. As a function of temperature T the resistance increases on decreasing T and saturates at approx. 1-10 K for all measured nanotubes. R(T) cannot be related to the energy-dependent DOS of graphene but is mainly caused by interaction and interference effects. On a relatively small voltage scale of order 10 meV, a pseudogap is observed in dI/dV which agrees with Luttinger-Liquid theories for nanotubes. Because we have used quantum diffusion based on Fermi-Liquid as well as Luttinger-Liquid theory in trying to understand our results, a large fraction of this paper is devoted to a careful discussion of all our results.Comment: 14 pages (twocolumn), 8 figure

    Determination of the Intershell Conductance in Multiwalled Carbon Nanotubes

    Full text link
    We report on the intershell electron transport in multiwalled carbon nanotubes (MWNT). To do this, local and nonlocal four-point measurements are used to study the current path through the different shells of a MWNT. For short electrode separations ≲\lesssim 1 μ\mum the current mainly flows through the two outer shells, described by a resistive transmission line with an intershell conductance per length of ~(10 k\Omega)^{-1}/μ\mum. The intershell transport is tunnel-type and the transmission is consistent with the estimate based on the overlap between π\pi-orbitals of neighboring shells.Comment: 5 pages, 4 figure

    Current carrying capacity of carbon nanotubes

    Full text link
    The current carrying capacity of ballistic electrons in carbon nanotubes that are coupled to ideal contacts is analyzed. At small applied voltages, where electrons are injected only into crossing subbands, the differential conductance is 4e2/h4e^2/h. At applied voltages larger than ΔENC/2e\Delta E_{NC}/2e (ΔENC\Delta E_{NC} is the energy level spacing of first non crossing subbands), electrons are injected into non crossing subbands. The contribution of these electrons to current is determined by the competing processes of Bragg reflection and Zener type inter subband tunneling. In small diameter nanotubes, Bragg reflection dominates, and the maximum differential conductance is comparable to 4e2/h4e^2/h. Inter subband Zener tunneling can be non negligible as the nanotube diameter increases because ΔENC\Delta E_{NC} is inversely proportional to the diameter. As a result, with increasing nanotube diameter, the differential conductance becomes larger than 4e2/h4e^2/h, though not comparable to the large number of subbands into which electrons are injected from the contacts. These results may be relevant to recent experiments in large diameter multi-wall nanotubes that observed conductances larger than 4e2/h4e^2/h.Comment: 12 pages, 4 figure

    Sensing electric fields using single diamond spins

    Full text link
    The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electron transistors (SET), single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we open up a new quantum metrology technique demonstrating precision electric field measurement using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC electric field sensitivity reaching ~ 140V/cm/\surd Hz has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~ 150 nm from our spin sensor with averaging for one second. By careful analysis of the electronic structure of the defect centre, we show how an applied magnetic field influences the electric field sensing properties. By this we demonstrate that diamond defect centre spins can be switched between electric and magnetic field sensing modes and identify suitable parameter ranges for both detector schemes. By combining magnetic and electric field sensitivity, nanoscale detection and ambient operation our study opens up new frontiers in imaging and sensing applications ranging from material science to bioimaging

    Carbon nanotubes adhesion and nanomechanical behavior from peeling force spectroscopy

    Get PDF
    Applications based on Single Walled Carbon Nanotube (SWNT) are good example of the great need to continuously develop metrology methods in the field of nanotechnology. Contact and interface properties are key parameters that determine the efficiency of SWNT functionalized nanomaterials and nanodevices. In this work we have taken advantage of a good control of the SWNT growth processes at an atomic force microscope (AFM) tip apex and the use of a low noise (1E-13 m/rtHz) AFM to investigate the mechanical behavior of a SWNT touching a surface. By simultaneously recording static and dynamic properties of SWNT, we show that the contact corresponds to a peeling geometry, and extract quantities such as adhesion energy per unit length, curvature and bending rigidity of the nanotube. A complete picture of the local shape of the SWNT and its mechanical behavior is provided

    Continental weathering and recovery from ocean nutrient stress during the Early Triassic Biotic Crisis

    Get PDF
    Following the latest Permian extinction ∼252 million years ago, normal marine and terrestrial ecosystems did not recover for another 5-9 million years. The driver(s) for the Early Triassic biotic crisis, marked by high atmospheric CO2 concentration, extreme ocean warming, and marine anoxia, remains unclear. Here we constrain the timing of authigenic K-bearing mineral formation extracted from supergene weathering profiles of NW-Pangea by Argon geochronology, to demonstrate that an accelerated hydrological cycle causing intense chemical alteration of the continents occurred between ∼254 and 248 Ma, and continued throughout the Triassic period. We show that enhanced ocean nutrient supply from this intense continental weathering did not trigger increased ocean productivity during the Early Triassic biotic crisis, due to strong thermal ocean stratification off NW Pangea. Nitrogen isotope constraints suggest, instead, that full recovery from ocean nutrient stress, despite some brief amelioration ∼1.5 million years after the latest Permian extinction, did not commence until climate cooling revitalized the global upwelling systems and ocean mixing ∼10 million years after the mass extinction

    Competing surface reactions limiting the performance of ion-sensitive field-effect transistors

    Get PDF
    © 2015 Elsevier B.V. All rights reserved.Ion-sensitive field-effect transistors based on silicon nanowires are promising candidates for the detection of chemical and biochemical species. These devices have been established as pH sensors thanks to the large number of surface hydroxyl groups at the gate dielectrics which makes them intrinsically sensitive to protons. To specifically detect species other than protons, the sensor surface needs to be modified. However, the remaining hydroxyl groups after functionalization may still limit the sensor response to the targeted species. Here, we describe the influence of competing reactions on the measured response using a general site-binding model. We investigate the key features of the model with a real sensing example based on gold-coated nanoribbons functionalized with a self-assembled monolayer of calcium-sensitive molecules. We identify the residual pH response as the key parameter limiting the sensor response. The competing effect of pH or any other relevant reaction at the sensor surface has therefore to be included to quantitatively understand the sensor response and prevent misleading interpretations
    • …
    corecore