40 research outputs found

    Nonlinear Bias and the Convective Fisher Equation

    Full text link
    We combine random walks, growth and decay, and convection, in a Monte Carlo simulation to model 1D interface dynamics with fluctuations. The continuum limit corresponds to the deterministic Fisher equation with convection. We find qualitatively the same type of asymmetry, as well as velocity difference, for interface profiles moving in opposite directions. However a transition apparent in the mean-field (continuum) limit is not found in the Monte Carlo simulation.Comment: 2.5 pages (texed) with 4 postscript figures, TeX 3.14t

    Nuclear Kaiso Expression Is Associated with High Grade and Triple-Negative Invasive Breast Cancer

    Get PDF
    Kaiso is a BTB/POZ transcription factor that is ubiquitously expressed in multiple cell types and functions as a transcriptional repressor and activator. Little is known about Kaiso expression and localization in breast cancer. Here, we have related pathological features and molecular subtypes to Kaiso expression in 477 cases of human invasive breast cancer. Nuclear Kaiso was predominantly found in invasive ductal carcinoma (IDC) (p = 0.007), while cytoplasmic Kaiso expression was linked to invasive lobular carcinoma (ILC) (p = 0.006). Although cytoplasmic Kaiso did not correlate to clinicopathological features, we found a significant correlation between nuclear Kaiso, high histological grade (p = 0.023), ERα negativity (p = 0.001), and the HER2-driven and basal/triple-negative breast cancers (p = 0.018). Interestingly, nuclear Kaiso was also abundant in BRCA1-associated breast cancer (p<0.001) and invasive breast cancer overexpressing EGFR (p = 0.019). We observed a correlation between nuclear Kaiso and membrane-localized E-cadherin and p120-catenin (p120) (p<0.01). In contrast, cytoplasmic p120 strongly correlated with loss of E-cadherin and low nuclear Kaiso (p = 0.005). We could confirm these findings in human ILC cells and cell lines derived from conditional mouse models of ILC. Moreover, we present functional data that substantiate a mechanism whereby E-cadherin controls p120-mediated relief of Kaiso-dependent gene repression. In conclusion, our data indicate that nuclear Kaiso is common in clinically aggressive ductal breast cancer, while cytoplasmic Kaiso and a p120-mediated relief of Kaiso-dependent transcriptional repression characterize ILC

    High Diversity of Testate Amoebae (Amoebozoa, Arcellinida) Detected by HTS

    No full text
    Testate (shell-building) amoebae, such as the Arcellinida (Amoebozoa), are useful bioindicators for climate change. Though past work has relied on morphological analyses to characterize Arcellinida diversity, genetic analyses revealed the presence of multiple cryptic species underlying morphospecies. Here, we design and deploy Arcellinida-specific primers for the SSU-rDNA gene to assess the community composition on the molecular level in a pilot study of two samplings from a New England fen: (1) 36-cm horizontal transects and vertical cores; and (2) 26-m horizontal transects fractioned into four size classes (2–10, 10–35, 35–100, and 100–300 μm). Analyses of these data show the following: (1) a considerable genetic diversity within Arcellinida, much of which comes from morphospecies lacking sequences on GenBank; (2) communities characterized by DNA (i.e. active + quiescent) are distinct from those characterized by RNA (i.e. active, indicator of biomass); (3) active communities on the surface tend to be more similar to one another than to core communities, despite considerable heterogeneity; and (4) analyses of communities fractioned by size find some lineages (OTUs) that are abundant in disjunct size categories, suggesting the possibility of life-history stages. Together, these data demonstrate the potential of these primers to elucidate the diversity of Arcellinida communities in diverse habitats
    corecore