38 research outputs found

    The toll-like receptor 3 pathway in homeostasis, responses to injury and wound repair

    Get PDF
    In addition to their established roles in host defence, Toll-like Receptors (TLRs) have emerging roles in control of homeostasis, injury and wound repair. The dsRNA-sensing receptor, TLR3, has been particularly implicated in such processes in several different tissues including the skin, intestine and liver, as well as in the control of reparative mechanisms in the brain, heart and kidneys, following ischemia reperfusion injury. In this review, we provide an overview of TLR3 signalling and functions in inflammation, tissue damage and repair processes, as well as therapeutic opportunities that may arise in the future from knowledge of such pathways

    Constitutive Activation of the Src Family Kinase Hck Results in Spontaneous Pulmonary Inflammation and an Enhanced Innate Immune Response

    Get PDF
    To identify the physiological role of Hck, a functionally redundant member of the Src family of tyrosine kinases expressed in myelomonocytic cells, we generated HckF/F “knock-in” mice which carry a targeted tyrosine (Y) to phenylalanine (F) substitution of the COOH-terminal, negative regulatory Y499-residue in the Hck protein. Unlike their Hck−/− “loss-of-function” counterparts, HckF/F “gain-of-function” mice spontaneously acquired a lung pathology characterized by extensive eosinophilic and mononuclear cell infiltration within the lung parenchyma, alveolar airspaces, and around blood vessels, as well as marked epithelial mucus metaplasia in conducting airways. Lungs from HckF/F mice showed areas of mild emphysema and pulmonary fibrosis, which together with inflammation resulted in altered lung function and respiratory distress in aging mice. When challenged transnasally with lipopolysaccharide (LPS), HckF/F mice displayed an exaggerated pulmonary innate immune response, characterized by excessive release of matrix metalloproteinases and tumor necrosis factor (TNF)α. Similarly, HckF/F mice were highly sensitive to endotoxemia after systemic administration of LPS, and macrophages and neutrophils derived from HckF/F mice exhibited enhanced effector functions in vitro (e.g., nitric oxide and TNFα production, chemotaxis, and degranulation). Based on the demonstrated functional association of Hck with leukocyte integrins, we propose that constitutive activation of Hck may mimic adhesion-dependent priming of leukocytes. Thus, our observations collectively suggest an enhanced innate immune response in HckF/F mice thereby skewing innate immunity from a reversible physiological host defense response to one causing irreversible tissue damage

    Receptor-interacting protein kinase 4 and interferon regulatory factor 6 function as a signaling axis to regulate keratinocyte differentiation

    Get PDF
    Receptor-interacting protein kinase 4 (RIPK4) and interferon regulatory factor 6 (IRF6) are critical regulators of keratinocyte differentiation, and their mutation causes the related developmental epidermal disorders Bartsocas-Papas syndrome and popliteal pterygium syndrome, respectively. However, the signaling pathways in which RIPK4 and IRF6 operate to regulate keratinocyte differentiation are poorly defined. Here we identify and mechanistically define a direct functional relationship between RIPK4 and IRF6. Gene promoter reporter and in vitro kinase assays, coimmunoprecipitation experiments, and confocal microscopy demonstrated that RIPK4 directly regulates IRF6 trans-activator activity and nuclear translocation. Gene knockdown and overexpression studies indicated that the RIPK4-IRF6 signaling axis controls the expression of key transcriptional regulators of keratinocyte differentiation, including Grainyhead-like 3 and OVO-like 1. Additionally, we demonstrate that the p.Ile121Asn missense mutation in RIPK4, which has been identified recently in Bartsocas-Papas syndrome, inhibits its kinase activity, thereby preventing RIPK4-mediated IRF6 activation and nuclear translocation. We show, through mutagenesis-based experiments, that Ser-413 and Ser-424 in IRF6 are important for its activation by RIPK4. RIPK4 is also important for the regulation of IRF6 expression by the protein kinase C pathway. Therefore, our findings not only provide important mechanistic insights into the regulation of keratinocyte differentiation by RIPK4 and IRF6, but they also suggest one mechanism by which mutations in RIPK4 may cause epidermal disorders (e.g. Bartsocas-Papas syndrome), namely by the impaired activation of IRF6 by RIPK4

    Interferon regulatory factor 6 differentially regulates toll-like receptor 2-dependent chemokine gene expression in epithelial cells

    Get PDF
    Epidermal and mucosal epithelial cells are integral to host defense. They not only act as a physical barrier but also utilize pattern recognition receptors, such as the Toll-like receptors (TLRs), to detect and respond to pathogens. Members of the interferon regulatory factor (IRF) family of transcription factors are key components of TLR signaling as they impart specificity to downstream responses. Although IRF6 is a critical regulator of epithelial cell proliferation and differentiation, its role in TLR signaling has not previously been addressed. We show here that IRF6 is activated by IRAK1 as well as by MyD88 but not by TRIF or TBK1. Co-immunoprecipitation experiments further demonstrated that IRF6 can interact with IRAK1. Gene silencing in epithelial cells along with gene promoter reporter assays showed that IRAK1 mediates TLR2-inducible CCL5 gene expression at least in part by promoting IRF6 activation. Conversely, IRAK1 regulated CXCL8 gene expression independently of IRF6, thus identifying a molecular mechanism by which TLR2 signaling differentially regulates the expression of specific chemokines in epithelial cells. Bioinformatics analysis and mutagenesis-based experiments identified Ser-413 and Ser-424 as key regulatory sites in IRF6. Phosphomimetic mutation of these residues resulted in greatly enhanced IRF6 dimerization and trans-activator function. Collectively, our findings suggest that, in addition to its importance for epithelial barrier function, IRF6 also contributes to host defense by providing specificity to the regulation of inflammatory chemokine expression by TLR2 in epithelial cells

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software

    Regulation of the Endosomal SNARE Protein Syntaxin 7 by Colony-Stimulating Factor 1 in Macrophages▿

    Get PDF
    Colony-stimulating factor 1 (CSF-1) is the main growth factor controlling the development of macrophages from myeloid progenitor cells. However, CSF-1 also regulates some of the key effector functions of macrophages (e.g., phagocytosis and cytokine secretion). The endosomal SNARE protein syntaxin 7 (Stx7) regulates vesicle trafficking events involved in phagocytosis and cytokine secretion. Therefore, we investigated the ability of CSF-1 to regulate Stx7. CSF-1 upregulated Stx7 expression in primary mouse macrophages; it also upregulated expression of its SNARE partners Vti1b and VAMP8 but not Stx8. Additionally, CSF-1 induced the rapid serine phosphorylation of Stx7 and enhanced its binding to Vti1b, Stx8, and VAMP8. Bioinformatics analysis and results from experiments with kinase inhibitors suggested the CSF-1-induced phosphorylation of Stx7 was mediated by protein kinase C and Akt in response to phosphatidylinositol 3-kinase activation. Based on mutagenesis studies, CSF-1 appeared to increase the binding of Stx7 to its SNARE partners by inducing the phosphorylation of serine residues in the Habc domain and/or “linker” region of Stx7. Thus, CSF-1 is a key regulator of Stx7 expression and function in macrophages. Furthermore, the effects of CSF-1 on Stx7 may provide a mechanism for the regulation of macrophage effector functions by CSF-1
    corecore