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Abstract 

In addition to their established roles in host defence, Toll-like Receptors (TLRs) have 

emerging roles in control of homeostasis, injury and wound repair. The dsRNA-sensing 

receptor, TLR3, has been particularly implicated in such processes in several different 

tissues including the skin, intestine and liver, as well as in the control of reparative 

mechanisms in the brain, heart and kidneys, following ischemia reperfusion injury. In 

this review, we provide an overview of TLR3 signalling and functions in inflammation, 

tissue damage and repair processes, as well as therapeutic opportunities that may arise 

in the future from knowledge of such pathways.  

Keywords: Toll-like receptor 3; wound repair; homeostasis; ischemia reperfusion 

injury; poly(IC); UV-damage  
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1. Introduction 

Pattern recognition receptors (PRRs) are widely studied in innate immune cells for their 

roles in host defence. In this context, they are tasked with detecting and responding to 

conserved pathogen-associated molecular patterns (PAMPs), which are essential for 

microbial survival and/or pathogenicity [1]. It is now clear that PRRs function more 

broadly as danger-sensing systems, detecting both pathogen- and host-derived factors 

that accumulate when homeostasis is perturbed. Indeed, PRRs have emerged as critical 

regulators of homeostasis and developmental processes. Such roles may relate to PRR 

functions in non-immune cells such as epithelial cells, where they are also expressed 

[2]. 

Of the PRR families, the Toll-like receptors (TLRs) have been most widely studied. 

These transmembrane receptors, which localize to both the plasma membrane and to 

endolysosomal compartments, play key roles in development, homeostasis and injury 

repair. For example, TLR2, which detects bacterial lipopeptides, maintains homeostasis 

at mucosal surfaces by promoting barrier integrity in intestinal epithelial cells (IECs) 

[2]. Along with TLR4, which recognizes Gram-negative bacterial lipopolysaccharide, 

TLR2 has also been implicated as a regulator of cardiovascular functions, 

thermoregulation and energy metabolism in the autonomic nervous system [3]. Such 

studies provide examples of roles for innate immune danger-sensors in regulating 

normal physiological processes to maintain homeostasis. Indeed, the capacity of TLRs 

to regulate the expression of genes involved in inflammation and repair processes, often 

in a tissue-specific manner, appears to be critical for maintenance of normal 

physiological processes [2]. 

TLR3 is a dsRNA-sensing TLR, first characterized as a regulator of anti-viral 

responses. However, subsequent studies demonstrated that TLR3 can also detect host-

derived RNA, thus enabling it to regulate injury repair processes. In this review, we 



provide an overview of TLR3 biology in the context of host defence and inflammation. 

We particularly focus on TLR3 functions in wound healing and in homeostatic control 

in the skin, gastrointestinal tract and liver, as well as during ischemia reperfusion (I/R) 

injury in the brain, heart and kidney (Fig. 1). Given that TLR3 agonists and antagonists 

already exist, manipulation of this pathway to accelerate tissue repair processes may be 

feasible in some pathophysiological settings. 

2. TLR3 signal transduction and its role in host defence 

2.1. Overview of TLR signalling 

A total of thirteen TLRs have been identified in humans and mice; ten in humans 

(TLR1-10) and twelve in mice (TLR1-9, 11-13) [4]. Each TLR recognizes cognate 

PAMPs, resulting in activation of distinct but overlapping signalling pathways through 

the initial recruitment of specific combinations of Toll/Interleukin (IL)-1 Receptor 

(TIR) domain-containing adaptor proteins. Briefly, upon activation, all TLRs, except for 

TLR3, recruit the adaptor protein myeloid differentiation primary response gene 88 

(MyD88), which contains a C-terminal TIR domain and an N-terminal death domain 

[5]. In the case of TLR4 and TLR2, MyD88-adaptor-like (MAL; also known as TIR 

domain-containing adaptor protein, TIRAP) acts as a bridging adaptor between MyD88 

and these TLRs. Recently, TLR5 in IECs [6], and TLR7 and TLR9 in macrophages [7], 

have also been shown to associate with MAL, thus implicating this adaptor in tissue-

specific responses to multiple TLRs. MyD88 then relays downstream signalling via the 

serine/threonine kinase IL-1R-associated kinases, the E3-ubiquitin ligase and 

scaffolding protein tumour necrosis factor (TNF) receptor-associated factor-6 (TRAF6) 

and the mitogen-activated protein kinases (MAPKs) [5]. This ultimately enables 

activation of pro-inflammatory transcription factors such as nuclear factor kappaB (NF-

κB) and activator protein-1 to drive inducible expression of pro-inflammatory target 

genes such as IL-1β, IL-6 and TNF-α (for reviews see [5,8,9]).  



TLR3 and TLR4 are both capable of signalling independently of MyD88, via the TIR 

domain-containing adaptor-inducing interferon (TRIF; also known as TIR-containing 

adaptor molecule 1, TICAM1) pathway [5]. TLR4 engages both MyD88 and TRIF, 

whereas TLR3 uses TRIF exclusively. TLR4 initiates the MyD88-dependent pathway at 

the plasma membrane, whilst signalling switches to TRIF-mediated responses once 

TLR4 is endocytosed [10]. Endosomal TLR4 signalling via TRIF requires the bridging 

adaptor TRIF-related adaptor molecule (TRAM; also known as TIR-containing adaptor 

molecule 2, TICAM2) [10]. TRIF signalling activates the serine/threonine kinase 

TANK binding kinase-1 (TBK-1), which phosphorylates the transcription factor 

interferon (IFN) regulating factor 3 (IRF3) [5]. IRF3 phosphorylation enables it to 

translocate to the nucleus and activate specific pro-inflammatory target genes, for 

example IFN-, which encodes a type-1 IFN [5]. 

2.2. TLR3 signalling 

Although TLR3 signalling has been extensively characterized, some new players and 

regulatory mechanisms have recently emerged (Fig. 2). TLR3 is assembled in the 

endoplasmic reticulum, from where it is recruited to endosomes by the transmembrane 

protein UNC93B1 [11]. It is the only TLR that directly recruits TRIF to its TIR domain 

to initiate signalling. This may relate to the fact that the conserved proline residue 

present in the BB-loop of most TLR TIR domains is an alanine in TLR3. Indeed, 

mutation of Ala795 in TLR3 to a proline resulted in MyD88-biased signalling [12]. As 

with TLR4 signalling, TRIF recruitment to TLR3 leads to the activation of the 

serine/threonine kinase TBK-1, which in turn phosphorylates IRF3 [13,14]. 

Phosphorylation occurs at multiple residues (e.g. Ser385, Ser386) in the C-terminal 

region of IRF3, enabling dimerization, nuclear translocation and transcription of IFN-β 

[15,16]. IFN-β signals in an autocrine fashion to activate the transcription factors signal 

transducer and activator of transcription (STAT) 1 and 2, resulting in the activation of 



type-1 IFN target genes and subsequent anti-viral responses [17]. Although IRF3 is the 

primary transcription factor driving IFN-β transcription during TLR3 signalling, other 

IRFs also function downstream of TLR3 to impart cell-specific signalling responses. 

For example, IRF6 is an epithelial cell-specific transcription factor that lies downstream 

of TLR3 signalling in keratinocytes. Specifically, it inhibits poly(IC)-inducible IFN- 

expression, while promoting poly(IC)-inducible IL-23p19 expression in primary human 

keratinocytes [18]. 

In addition to activating IRF3, TLR3 signalling via TRIF also activates NF-κB [19,20]. 

The C-terminal region of TRIF contains a receptor-interacting protein homotypic 

interaction motif (RHIM), which is essential for its interaction with the serine/threonine 

kinase receptor-interacting protein kinase (RIPK)1 [21,22]. TLR3- and TLR4-mediated 

NF-κB activation is impaired in the absence of RIPK1 [21]. RIPK1 undergoes K63-

linked polyubiquitination and interacts with TRAF6 and transforming growth factor-

beta activated kinase 1 (TAK1), resulting in NF-κB activation [23]. The TRIF-RIPK1 

axis is a central control point in cell survival/death pathways, since RIPK1 also 

associates with Fas-associated death domain (FADD), via a death domain interaction 

[22]. This subsequently leads to the assembly of a death-inducing signalling complex 

that contains caspase-8 [22]. Homodimerized caspase-8 undergoes autocatalytic 

processing and activation, leading to RIPK1 cleavage and inactivation, followed by 

apoptotic cell death [22]. However, if caspase-8 heterodimerizes with a non-

catalytically active homologue of caspase-8, FLICE-like inhibitory protein, it is 

partially activated [22]. This complex is not able to cleave RIPK1 adequately to cause 

apoptosis, and therefore mediates cell survival [22]. Furthermore, if caspase-8 activity is 

compromised, RIPK1 cleavage is completely prevented, thereby allowing it to interact 

with RIPK3 to form a necrosome, leading to necroptotic cell death [24,25]. Thus, 



RIPK1 acts as a central signalling hub in dictating whether TLR3 signalling promotes 

survival, apoptotic cell death or necroptotic cell death.  

2.3. Role of TLR3 in host defence 

The role of TLR3 in host defence was first dissected through gene knock-out studies in 

mice, revealing a role in dsRNA recognition and anti-viral responses. In macrophages 

from Tlr3
-/-

 mice, the production of the inflammatory cytokines IL-6, IL-12 and TNF- 

in response to the synthetic dsRNA analogue poly(IC), but not other TLR agonists, was 

impaired [26]. Additionally, Tlr3
-/-

 mice are highly susceptible to infection by many 

RNA viruses, including rhinovirus, influenza A virus (IAV) and respiratory syncytial 

virus [27]. Genetic association studies in humans have also linked the TLR3 pathway to 

host defence against IAV. A patient with IAV-induced encephalopathy showed a 

missense mutation (F303S) in the TLR3 gene [28]. Additionally, children with a 

particular TLR3 polymorphism (rs5743313/CT) have an increased risk of pneumonia 

caused by the pandemic IAV/H1N1 (2009) [29]. Complex roles for TLR3 in host 

protection versus immunopathology have also reported in other viral infection models, 

for example West Nile virus (WNV) [30,31]. An initial study showed that Tlr3
-/-

 mice 

were protected from WNV-induced encephalitis, because of reduced viral entry into the 

central nervous system [30]. This study also linked TLR3 to a TNF-α-mediated 

reduction in blood-brain barrier (BBB) integrity upon WNV infection. However, a 

subsequent study reported that TLR3 deficiency resulted in enhanced WNV replication 

in primary cortical neurons, and that viral replication was actually increased in the brain 

and spinal chord of Tlr3
-/-

 mice [31]. The contrasting conclusions from these studies 

[30,31] may reflect differences in viral doses and/or routes of administration used. 

These factors would likely affect the magnitude of the initial inflammatory response 

upon WNV challenge, potentially leading to differential effects on BBB integrity in the 

two models. 



Although these studies provide links between TLR3 and host responses to RNA viruses, 

most genetic studies in humans actually posit the TLR3-TRIF-IRF3 axis in responses 

against DNA viruses. The first evidence for this was the demonstration that TLR3 has a 

host protective function against the dsDNA virus, herpes simplex virus (HSV)-1 [32]. 

Patients with mutations in TLR3 and UNC93B1 are susceptible to HSV-1 encephalitis 

[32-34]. Recognition by TLR3 of intermediate dsRNA produced by HSV-1 during its 

replicative cycle likely explains this phenomenon [32]. These findings were supported 

by subsequent analysis of patients with defects in genes encoding the TLR3 signalling 

components TRIF, TBK-1 and IRF3 [35-37]. An impaired TLR3-inducible type-1 IFN 

response to HSV-1 in neurons and oligodendrocytes in the central nervous system 

(CNS) was subsequently linked with this condition [32-37]. These findings are also 

consistent with studies in mouse models of DNA virus infections. Tlr3
-/-

 mice displayed 

enhanced replication of HSV-1 in the CNS [38], and an increased susceptibility to 

HSV-2 infection in the CNS after vaginal inoculation [39]. In humans, TLR3 

polymorphisms (C1234T, rs1879026 G/T) have also been linked to increased risk to 

chronic hepatitis B virus (HBV) infection and HBV-induced hepatocellular carcinoma 

[40,41], while the C13766T TLR3 polymorphism was suggested to be protective against 

HBV infection and HBV-related liver disease [42]. A study analysing Saudi Arabian 

patients with HBV infections reported a TLR3 single nucleotide polymorphism 

(rs1879026 G/T) that was found more frequently in HBV-infected patients [40]. 

Peripheral blood mononuclear cells from HBV-infected patients were also reported to 

have increased TLR3 levels in active chronic HBV infection and related liver failure 

[43]. Collectively, these studies reveal a significant role for TLR3 signalling in 

responses to a wide range of viral pathogens.     

3. TLR3 functions in homeostasis and wound healing 

3.1. Skin 



Human skin is constantly exposed to microbes. Not surprisingly then, keratinocytes 

express TLRs, responding to PAMPs with inflammatory cytokine production. These 

cells are especially responsive to TLR3 agonists [18,44-47], and an initial study on 

human keratinocytes revealed an unexpected role for this PRR in detecting RNA 

released from damaged cells [48]. More specifically, UVB-damaged keratinocytes 

release U1 spliceosomal non-coding RNA that activates TLR3 in non-irradiated cells, 

resulting in the release of inflammatory cytokines, such as TNF-α and IL-6 [49]. These 

effects are consistent with findings from earlier studies, showing that UV-radiation 

activated NF-κB [50], triggered the pro-inflammatory MAPK p38 and c-Jun N-terminal 

kinase signalling arms [51-53], and promoted IL-6 and TNF-α release [54,55]. In light 

of subsequent studies on U1 RNA-mediated TLR3 activation, it seems likely that this 

pathway is involved in initiating these UVB-triggered inflammatory responses. 

Poly(IC)-mediated TLR3 activation also directly upregulated the expression of several 

genes encoding proteins associated with maintenance of epidermal structure, for 

example transglutaminase-1 (TGM1) [56]. In oral keratinocytes, IRF6 regulates 

Grainyhead-like 3 expression [57,58], which has been reported to directly regulate 

TGM1 transcription [59]. Thus, it is conceivable that TLR3-inducible TGM1 expression 

occurs via the IRF6-dependent pathway [18]. Finally, the importance of such responses 

in wound repair is highlighted by the observation that Tlr3
-/- 

mice exhibit chronic 

wounds and impaired re-epithelialization following acute UVB-irradiation [56].  

There is also evidence that TLR3 regulates host responses during physical injury of the 

skin. TLR3 mRNA and protein levels were upregulated in full excisional wounded skin; 

moreover, TLR3 was required for TNF-α and IL-6 production at wound edges, as well 

as optimal wound closure [48,60]. Impaired wound closure in Tlr3
-/- 

mice may be linked 

to reduced secretion of the chemokine C-X-C motif ligand (CXCL)-2, leading to 

defective recruitment of neutrophils and macrophages to the injury site [60,61]. 



Collectively, these studies demonstrate that TLR3 has a critical role in detecting cell 

damage in the skin, initiating inflammatory processes that are required for wound 

healing and directly promoting the expression of genes in keratinocytes required for 

barrier function (Fig. 3). 

Mechanistically, IRF6, an epithelial cell-specific transcription factor that is required for 

keratinocyte differentiation, may be involved in some of the above processes. IRF6 

suppressed poly(IC)-inducible IFN- mRNA, while promoting inducible IL-23p19 

mRNA expression in human keratinocytes [18]. IFN- has been shown to inhibit 

proliferation and promote terminal differentiation of keratinocytes [62,63]. Therefore, 

IRF6-mediated IFN- inhibition may enable a proliferative and reparative response in 

the skin. Intriguingly, we recently showed that poly(IC) selectively upregulates the 

expression of the IL-12 family genes IL-23p19 ( sub-unit) and Epstein-Barr virus 

induced 3 (EBI3) ( sub-unit) in keratinocytes, and that these two sub-units interact 

when co-expressed in cells [18]. This suggests that IL-23p19 and EBI3 may function as 

a novel IL-12 family cytokine.  Indeed, these two subunits were very recently reported 

to form IL-39, which was shown to promote neutrophil expansion in lupus-prone mice 

[64,65]. Therefore, IL-39 may play a role downstream of TLR3 in wound healing 

responses in the skin by promoting neutrophil-mediated responses at the site of injury. 

Interestingly, IRF6 itself has been suggested to have a role in wound healing. Patients 

with IRF6 mutation-associated cleft lip/palate disorders were more likely to have wound 

complications after corrective surgery (47% of patients), compared to patients with 

other forms of cleft lip/palate (19% of patients) [66]. This conclusion is supported by an 

in vitro study showing that IRF6 mRNA expression was upregulated in normal 

keratinocytes during scratch wounding [67]. Thus, there may be a functional connection 

between TLR3 and IRF6 in promoting wound healing responses in the skin, possibly 

involving co-expressed IL-23p19 and EBI3.  



3.2. Intestinal Tract  

IECs express functional TLRs and can initiate pro-inflammatory signalling upon 

pathogen recognition [2]. Emerging evidence also implicates epithelial-expressed TLRs 

in intestinal homeostasis and prevention of dysregulated mucosal inflammation [68]. 

Consistent with its pro-wound healing role in the skin, a tissue-protective role for TLR3 

in the intestine was observed during dextran sodium sulphate-induced colitis [69]. 

Subcutaneous poly(IC) pre-treatment protected mice from colitis, an effect not observed 

in Tlr3
-/-

 mice [69]. Levels of inducible nitric oxide synthase, cyclooxygenase-2, serum 

CXCL1/KC (derived from keratinocytes) and amyloid A were also reduced in poly(IC)-

treated mice [69]. However, other studies actually implicate TLR3 signalling in 

inducing acute injury in gut epithelia [70-72]. Intraperitoneal injection of rotavirus 

dsRNA resulted in severe injury in the small intestine as characterized by thinning of 

the intestinal wall, erosion of villi and the mucus membrane, and weight loss; Tlr3
-/-

 

mice were protected from such effects [70-72]. Poly(IC) administration also up-

regulated serum levels of several cytokines including IL-15 and IFN- [70]. IL-15 was 

shown to have a non-redundant role in driving TLR3-mediated injury, whereas IFN- 

had a protective effect [70]. Interestingly, this IL-15-dependent mechanism of intestinal 

damage has previously been reported in human patients with celiac disease, where the 

activation of intraepithelial cytotoxic T lymphocytes by IL-15 led to uncontrolled cell 

destruction and atrophy [73-76]. Poly(IC), acting via TLR3, TRIF and caspase-8, also 

induced epithelial cell apoptosis and altered the structure and function of the intestine 

[71], which may relate to host-protective functions against viral infections. Indeed, a 

subsequent study showed that epithelial-specific deletion of caspase-8 resulted in TRIF-

dependent TLR3-mediated necroptosis and a more severe inflammatory phenotype [72]. 

Finally, poly(IC) has also been reported to regulate gut permeability and induce 

oxidative stress in an epithelial cell line [77,78]. Thus, TLR3 signalling in the 



epithelium seems to contribute both to host-protective epithelial cell shedding during 

pathogen challenge, as well as cell damage and injury that can be detrimental to the 

host.  

3.3. Liver 

In healthy liver tissue, hepatic stellate cells (HSC) and resident macrophages (Kupffer 

cells) are in a quiescent state; upon injury, these cells are activated, leading to the 

release of inflammatory mediators and immune cell recruitment. HSC also undergo 

transformation into myofibroblasts, leading to increased production of extracellular 

matrix proteins; this process is a host-protective response, but causes scarring and liver 

fibrosis when dysregulated [79]. As noted above, TLR3 signalling has been implicated 

in host responses during HBV infection [40-42]. However, growing evidence suggests 

that TLR3 also contributes to the inactivation or death of activated HSC and Kupffer 

cells during liver injury, contributing to protective responses against liver damage [80] 

and fibrosis [81,82].  

Mechanistically, poly(IC) treatment attenuated lipopolysaccharide-induced liver injury 

by down-regulating TLR4 expression [83]. Poly(IC) also reduced carbon tetrachloride-

induced liver fibrosis by activating TLR3 in cytotoxic natural killer cells, resulting in 

IFN- production and apoptosis of activated HSC. This in turn inhibited the progression 

of inflammation and liver damage [81,82]. Interestingly, in an alcohol-induced liver 

injury model, TLR3 signalling activated HSC and Kupffer cells to produce the anti-

inflammatory cytokine IL-10, which subsequently antagonized TLR4 signalling and 

minimized liver injury [84]. Another study showed that poly(IC) treatment suppressed 

inflammation and fat accumulation in the liver of alcohol-injured mice [80]. These 

effects were not apparent in Tlr3
-/-

 or IL-10
-/-

 mice, suggesting that TLR3-inducible IL-

10 suppresses inflammation and steatosis [80]. Conversely, in a mouse model of 

autoimmune liver disease, TLR3 was shown to enhance CD8
+
 T-cell infiltration into the 



liver via IFN- and chemokines (e.g. CXCL9) [85]. In this case, the TLR3 pathway was 

linked to pro-inflammatory responses and the progression of liver damage [85]. This 

finding suggests that TLR3 has a complex role in liver homeostasis, and thus there is a 

need to more completely understand the mechanisms by which TLR3 exerts protective 

versus pathological effects in liver disease.  

3.4. I/R injury in the brain 

I/R injury occurs when there is insufficient blood supply in a tissue leading to oxygen 

deprivation (anoxia or hypoxia), following which blood supply is restored. In the brain, 

I/R can occur during stroke, when a blood vessel is blocked, or during cardiac arrest 

[86]. The cellular and molecular mechanisms of brain I/R injury are poorly understood, 

however, inflammatory pathways play a critical role in both injury and repair processes 

[86]. As indicated earlier (see Section 2.3), TLR3 has previously been implicated in 

mediating loss of BBB integrity and contributing to neuropathology in a mouse model 

of WNV infection [30]. Nonetheless, recent studies have reported protective effects of 

poly(IC) treatment in brain I/R injury models [87-89]. This was linked to the capacity of 

TLR3 signalling in human astrocytes to drive expression of anti-inflammatory 

cytokines, such as Ifn-, which act as neuroprotective factors [87,88]. More specifically, 

poly(IC) pre-treatment of mice or primary astrocytes increased cell viability and 

proliferation, and reduced NF-B activation and inflammatory cytokine production 

following I/R injury [87,88]. This treatment regime also triggered Irf3 phosphorylation 

and upregulated Ifn-expression, suggesting a role for this signalling arm in injury 

repair [90]. Furthermore, protection against neuronal damage was lost in Tlr3
-/-

 mice 

[90]. In vitro experiments also showed that TLR3 interacted with Fas in microglial cells, 

limiting its interaction with FADD, as well as subsequent Fas/FADD-mediated 

activation of caspase-3 and 8 and microglial cell apoptosis [90]. Together, these studies 



suggest that TLR3 signalling has the capacity to limit neurological damage during I/R 

injury.  

3.5. I/R injury in the heart 

I/R injury of the heart can be caused by angioplasty, acute myocardial infarction, 

exercise, stress-induced ischemia or coronary artery bypass surgery [91]. As opposed to 

its protective role in brain ischemic injury, TLR3 signalling has been linked to the 

pathology of myocardial I/R injury. Tlr3
-/-

 mice showed significantly attenuated 

myocardial dysfunction, myocardial apoptosis and reduced infarct size in an I/R injury 

model [92]. TLR3-mediated NF-B activation, and subsequent production of 

inflammatory mediators (e.g. TNF- and IL-1) promoted leukocyte infiltration into the 

heart leading to inflammation and organ dysfunction [92]. Tlr3 deficiency also reduced 

the levels of the I/R-inducible pro-apoptotic proteins B-cell CLL/lymphoma 2 (Bcl2)-

associated X (Bax) and Bcl2 antagonist/killer (Bak), while increasing Bcl2 expression 

[92]. Increased cardiac expression of Bcl2 is known to protect mice from I/R injury by 

preventing apoptotic cell death [93]. Subsequently, another study showed that 

myocardial I/R injury induces cardiomyocyte necrosis and release of RNA, which 

activates TLR3 signalling [94]. Moreover, RNase-treated necrotic cardiomyocytes 

failed to induce inflammatory responses, such as IL-1 production, in macrophages and 

cardiomyocytes [94]. Similarly, RNase administration in vivo reduced inflammation, 

leading to protective effects [94]. Taken together, these recent studies suggest that RNA 

released from necrotic cardiomyocytes during I/R injury promotes TLR3 signalling, 

leading to apoptotic cell death, myocardial injury and pathological sequelae. 

3.6. I/R injury in the kidney 

I/R in the kidney can induce acute injury or renal failure by triggering inflammation, 

decreasing microvascular blood flow and causing endothelial dysfunction [95]. 



Although relatively little is known of the role of TLR3 signalling during kidney 

damage, one study demonstrated that serum creatinine levels were significantly reduced 

in Tlr3
-/-

 mice following renal I/R injury [96]. This study also showed that Tlr3 

signalling is initiated early in response to acute kidney injury, and that the levels of 

angiotensin-converting enzyme and inflammatory mediators, as well as cellular 

apoptosis, necrosis and renal damage, were reduced in Tlr3
-/-

 mice [96]. Additional 

studies are now required to confirm that TLR3-dependent inflammatory responses 

contribute to kidney damage during renal I/R injury, and to uncover further insights into 

mechanisms responsible. 

4. Therapeutic implications 

The above studies clearly document non-redundant roles for TLR3 in promoting or 

impairing tissue repair in different contexts. TLR3 agonists have been widely employed 

in experimental studies [61,69,87,97], and antagonists of the TLR3 pathway, acting at 

the level of the receptor [98] or intracellular signalling molecules such as TBK-1 [99], 

have been reported. Thus, one can envisage manipulation of TLR3 signalling responses 

to promote wound repair for certain conditions. For example, the demonstration that 

treatment of wounded skin of humans and mice with poly(IC) significantly reduced 

recovery time [61] provides proof of concept for such approaches. This may be 

particularly relevant in situations where wound healing is impaired, as is commonly the 

case in patients with type II diabetes [100]. The capacity of UVB-radiation to activate 

TLR3 responses in the skin could also potentially be harnessed for the treatment of 

certain dermatological conditions [49]. Patients with psoriasis respond well to narrow 

band UVB-radiation [101], and UVA/UVB-radiation was demonstrated to have 

beneficial effects in patients with atopic dermatitis [102]. However, given that such 

approaches can have potential long-term complications, for example skin cancer, 

alternative strategies to agonise TLR3 may be more applicable.   



The literature reviewed above also identifies TLR3 as a candidate target in the context 

of I/R injury. For example, in a mouse model, poly(IC) treatment following I/R injury 

improved recovery of brain function, as assessed by neurological behaviour [89]. 

Beneficial effects were also observed in rats, using a similar approach [88]. These data 

support the potential for TLR3 agonists in brain I/R injury, such as stroke. Indeed, 

Hiltonol, a nuclease-resistant and stabilized form of poly(IC), induced IFN- production 

in astrocytes and microglia and stabilized the blood-brain-barrier, leading to reduced 

leukocyte infiltration [103]. Hiltonol has been used to boost IFN production in several 

clinical trials for many types of cancer, including brain cancer [104,105], but not yet for 

brain I/R injury. Another synthetic TLR3 ligand, Ampligen, which is composed of 

poly(IC) with a U mismatch at every 12
th

 base of the C-strand, has mainly been studied 

for activation of Th1 responses [106] and as a treatment for viral infections [107]. The 

literature reviewed here suggests that there may be merit in investigating Hiltonol, 

Ampligen and other TLR3 agonists as agents for promoting injury repair in at least 

some pathological settings, for example stroke and liver injury. 

Although TLR3 antagonists have been reported, they have not been extensively 

assessed as potential therapeutic agents. TLR3 monoclonal antibodies (CNTO4685 and 

CNTO5429) inhibited poly(IC)-induced NF-B activation in HEK293T cells expressing 

TLR3, as well as serum levels of pro-inflammatory cytokines, such as IL-6 and TNF-, 

after administration in vivo [108]. A small molecule inhibitor of TLR3 (compound 4a), 

acting at the level of ligand binding, has also been reported [98]. Proof-of-concept 

studies are now required to determine whether TLR3 antagonism is efficacious in 

animal models of intestinal inflammation, as well as I/R injury in the heart and/or 

kidney.  



5. Conclusions and outlook 

TLR3 signalling has a major role not only in immune responses during infection, but 

also in homeostasis and tissue repair following injury. The molecular mechanisms 

involved are now being unravelled, such that one can envisage the development of new 

strategies to control inflammatory responses during injury and to promote tissue repair. 

However, a major challenge is that the TLR3 pathway has both host-protective and 

pathological functions in different organs or settings, and this must be given careful 

attention in considering new therapeutic strategies involving manipulation of this 

pathway. With this caveat in mind, agonism of TLR3 or specific downstream pathways 

could be considered in the context of wound healing in the skin, liver fibrosis and brain 

I/R injury, while TLR3 antagonists may have potential for cardiac and kidney injury, as 

well as intestinal disease. A more complete understanding of epithelial cell-specific 

TLR3 signalling events may ultimately guide more targeted approaches for 

manipulating this pathway to enhance wound healing and injury repair.  
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Figure legends 

Fig. 1. TLR3 signalling in wound repair and homeostasis. 

The TLR3-TRIF signalling pathway exhibits both protective and harmful roles in injury 

repair processes in different organs.  

Fig. 2. TLR3 signalling and downstream cellular responses. 

TLR3 interacts directly with TRIF to initiate signalling. This may relate to the lack of a 

conserved proline residue, present in the BB-loop of other TLRs (Alanine 795 in 

TLR3). TRIF signalling induces IFN- expression via TBK-1 and IRF3, whilst 

epithelial cell-specific IRF6 inhibits this response. TRIF also interacts with RIPK1 to 

drive NF-κB activation and inducible expression of inflammatory genes, such as those 

encoding TNF- and IL-6. RIPK1 also acts as a signalling hub for control of TLR3-

dependent cell survival, apoptosis and necroptosis. 

Fig. 3. TLR3 signalling in the skin. 

TLR3 is activated by U1 spliceosomal non-coding RNA released during cell-damage. 

TLR3 signalling leads to the production of inflammatory mediators, such as TNF-α and 

IL-6, which enable recruitment of neutrophils and macrophages to the site of injury. 

IRF6 promotes epithelial cell-specific TLR3 signalling responses, possibly contributing 

to wound repair processes in the skin. TLR3 activation also upregulates the expression 

of genes associated with maintenance of epidermal structure, such as ATP-binding 

cassette sub-family A member 12 (ABCA12), glucocerebrosidase (GBA), acid 

sphingomyelinase (ASM) and TGM1, which are required for barrier repair. 
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