14 research outputs found

    Development of spasticity with age in a total population of children with cerebral palsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of spasticity with age in children with cerebral palsy (CP) has, to our knowledge, not been studied before. In 1994, a register and a health care program for children with CP in southern Sweden were initiated. In the programme the child's muscle tone according to the modified Ashworth scale is measured twice a year until six years of age, then once a year. We have used this data to analyse the development of spasticity with age in a total population of children with cerebral palsy.</p> <p>Methods</p> <p>All measurements of muscle tone in the gastrocnemius-soleus muscle in all children with CP from 0 to 15 years during the period 1995–2006 were analysed. The CP subtypes were classified according to the Surveillance of Cerebral Palsy in Europe network system. Using these criteria, the study was based on 6218 examinations in 547 children. For the statistical analysis the Ashworth scale was dichotomized. The levels 0–1 were gathered in one category and levels 2–4 in the other. The pattern of development with age was evaluated using piecewise logistic regression in combination with Akaike's An Information Criterion.</p> <p>Results</p> <p>In the total sample the degree of muscle tone increased up to 4 years of age. After 4 years of age the muscle tone decreased each year up to 12 years of age. A similar development was seen when excluding the children operated with selective dorsal rhizotomy, intrathecal baclofen pump or tendo Achilles lengthening. At 4 years of age about 47% of the children had spasticity in their gastro-soleus muscle graded as Ashworth 2–4. After 12 years of age 23% of the children had that level of spasticity. The CP subtypes spastic bilateral and spastic unilateral CP showed the same pattern as the total sample. Children with dyskinetic type of CP showed an increasing muscle tone up to age 6, followed by a decreasing pattern up to age 15.</p> <p>Conclusion</p> <p>In children with CP, the muscle tone as measured with the Ashworth scale increases up to 4 years of age and then decreases up to 12 years of age. The same tendency is seen in all spastic subtypes. The findings may have implications both for clinical judgement and for research studies on spasticity treatment.</p

    LEARN 2 MOVE 7-12 years: a randomized controlled trial on the effects of a physical activity stimulation program in children with cerebral palsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regular participation in physical activities is important for all children to stay fit and healthy. Children with cerebral palsy have reduced levels of physical activity, compared to typically developing children. The aim of the LEARN 2 MOVE 7-12 study is to improve physical activity by means of a physical activity stimulation program, consisting of a lifestyle intervention and a fitness training program.</p> <p>Methods/Design</p> <p>This study will be a 6-month single-blinded randomized controlled trial with a 6-month follow up. Fifty children with spastic cerebral palsy, aged 7 to 12 years, with Gross Motor Function Classification System levels I-III, will be recruited in pediatric physiotherapy practices and special schools for children with disabilities. The children will be randomly assigned to either the intervention group or control group. The children in the control group will continue with their regular pediatric physiotherapy, and the children in the intervention group will participate in a 6-month physical activity stimulation program. The physical activity stimulation program consists of a 6-month lifestyle intervention, in combination with a 4-month fitness training program. The lifestyle intervention includes counseling the child and the parents to adopt an active lifestyle through Motivational Interviewing, and home-based physiotherapy to practise mobility-related activities in the daily situation. Data will be collected just before the start of the intervention (T0), after the 4-month fitness training program (T4), after the 6-month lifestyle intervention (T6), and after six months of follow-up (T12). Primary outcomes are physical activity, measured with the StepWatch Activity Monitor and with self-reports. Secondary outcomes are fitness, capacity of mobility, social participation and health-related quality of life. A random coefficient analysis will be performed to determine differences in treatment effect between the control group and the intervention group, with primary outcomes and secondary outcomes as the dependent variables.</p> <p>Discussion</p> <p>This is the first study that investigates the effect of a combined lifestyle intervention and fitness training on physical activity. Temporary effects of the fitness training are expected to be maintained by changes to an active lifestyle in daily life and in the home situation.</p> <p>Trial registration</p> <p>This study is registered in the Dutch Trial Register as NTR2099.</p

    Modified constraint-induced movement therapy or bimanual occupational therapy following injection of Botulinum toxin-A to improve bimanual performance in young children with hemiplegic cerebral palsy: a randomised controlled trial methods paper

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Use of Botulinum toxin-A (BoNT-A) for treatment of upper limb spasticity in children with cerebral palsy has become routine clinical practice in many paediatric treatment centres worldwide. There is now high-level evidence that upper limb BoNT-A injection, in combination with occupational therapy, improves outcomes in children with cerebral palsy at both the body function/structure and activity level domains of the International Classification of Functioning, Disability and Health. Investigation is now required to establish what amount and specific type of occupational therapy will further enhance functional outcomes and prolong the beneficial effects of BoNT-A.</p> <p>Methods/Design</p> <p>A randomised, controlled, evaluator blinded, prospective parallel-group trial. Eligible participants were children aged 18 months to 6 years, diagnosed with spastic hemiplegic cerebral palsy and who were able to demonstrate selective motor control of the affected upper limb. Both groups received upper limb injections of BoNT-A. Children were randomised to either the modified constraint-induced movement therapy group (experimental) or bimanual occupational therapy group (control). Outcome assessments were undertaken at pre-injection and 1, 3 and 6 months following injection of BoNT-A. The primary outcome measure was the Assisting Hand Assessment. Secondary outcomes included: the Quality of Upper Extremity Skills Test; Pediatric Evaluation of Disability Inventory; Canadian Occupational Performance Measure; Goal Attainment Scaling; Pediatric Motor Activity Log; modified Ashworth Scale and; the modified Tardieu Scale.</p> <p>Discussion</p> <p>The aim of this paper is to describe the methodology of a randomised controlled trial comparing the effects of modified constraint-induced movement therapy (a uni-manual therapy) versus bimanual occupational therapy (a bimanual therapy) on improving bimanual upper limb performance of children with hemiplegic cerebral palsy following upper limb injection of BoNT-A. The paper outlines the background to the study, the study hypotheses, outcome measures and trial methodology. It also provides a comprehensive description of the interventions provided.</p> <p>Trial Registration</p> <p>ACTRN12605000002684</p

    Anteile weiblicher Tiermedizinstudierender in Staaten mit unterschiedlichem Entwicklungsstand im europäischen Raum

    No full text

    GRIN: " GRoup versus INdividual physiotherapy following lower limb intra-muscular Botulinum Toxin-A injections for ambulant children with cerebral palsy: An assessor-masked randomised comparison trial": Study protocol

    Get PDF
    Background: Cerebral palsy is the most common cause of physical disability in childhood. Spasticity is a significant contributor to the secondary impairments impacting functional performance and participation. The most common lower limb spasticity management is focal intramuscular injections of Botulinum Toxin-Type A accompanied by individually-delivered (one on one) physiotherapy rehabilitation. With increasing emphasis on improving goal-directed functional activity and participation within a family-centred framework, it is timely to explore whether physiotherapy provided in a group could achieve comparable outcomes, encouraging providers to offer flexible models of physiotherapy delivery. This study aims to compare individual to group-based physiotherapy following intramuscular Botulinum Toxin-A injections to the lower limbs for ambulant children with cerebral palsy aged four to fourteen years.Methods/Design: An assessor-masked, block randomised comparison trial will be conducted with random allocation to either group-based or individual physiotherapy. A sample size of 30 (15 in each study arm) will be recruited. Both groups will receive six hours of direct therapy following Botulinum Toxin-A injections in either an individual or group format with additional home programme activities (three exercises to be performed three times a week). Study groups will be compared at baseline (T1), then at 10 weeks (T2, efficacy) and 26 weeks (T3, retention) post Botulinum Toxin-A injections. Primary outcomes will be caregiver/s perception of and satisfaction with their child's occupational performance goals (Canadian Occupational Performance Measure) and quality of gait (Edinburgh Visual Gait Score) with a range of secondary outcomes across domains of the International Classification of Disability, Functioning and Health.Discussion: This paper outlines the study protocol including theoretical basis, study hypotheses and outcome measures for this assessor-masked, randomised comparison trial comparing group versus individual models of physiotherapy following intramuscular injections of Botulinum Toxin-A to the lower limbs for ambulant children with cerebral palsy.Trial registration: ACTRN12611000454976

    An Overview of SOM Literature

    No full text

    Cerebral palsy

    No full text
    corecore