2,501 research outputs found

    A new puzzle for random interaction

    Get PDF
    We continue a series of numerical experiments on many-body systems with random two-body interactions, by examining correlations in ratios in excitation energies of yrast JJ = 0, 2, 4, 6, 8 states. Previous studies, limited only to JJ = 0,2,4 states, had shown strong correlations in boson systems but not fermion systems. By including J≄6J \ge 6 states and considering different scatter plots, strong and realistic correlations appear in both boson and fermion systems. Such correlations are a challenge to explanations of random interactions.Comment: 4 pages, 4 figure

    Breeding for improved responsiveness to arbuscular mycorrhizal fungi in onion

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) play an important role in the uptake of nutrients and water from soil. Onions, Allium cepa L., are plants with a shallow root system. As a result, onion plants need a lot of fertiziler for their growth. Furthermore, onion plants are sensitive to drought. The aim of the current research project is to study the beneficial effect of mycorrhizal fungi on the growth and development of Allium species and to determine whether it is possible to improve onions for mycorrhizal responsiveness by means of breeding. Variation among Allium species and segregation observed in a interspecific tri-hybrid population indicate that selection and thus breeding for high responsiveness to AMF is possible

    Conduction spectroscopy of a proximity induced superconducting topological insulator

    Get PDF
    The combination of superconductivity and the helical spin-momentum locking at the surface state of a topological insulator (TI) has been predicted to give rise to p-wave superconductivity and Majorana bound states. The superconductivity can be induced by the proximity effect of a an s-wave superconductor (S) into the TI. To probe the superconducting correlations inside the TI, dI/dV spectroscopy has been performed across such S-TI interfaces. Both the alloyed Bi1.5_{1.5}Sb0.5_{0.5}Te1.7_{1.7}Se1.3_{1.3} and the stoichiometric BiSbTeSe2_2 have been used as three dimensional TI. In the case of Bi1.5_{1.5}Sb0.5_{0.5}Te1.7_{1.7}Se1.3_{1.3}, the presence of disorder induced electron-electron interactions can give rise to an additional zero-bias resistance peak. For the stoichiometric BiSbTeSe2_2 with less disorder, tunnel barriers were employed in order to enhance the signal from the interface. The general observations in the spectra of a large variety of samples are conductance dips at the induced gap voltage, combined with an increased sub-gap conductance, consistent with p-wave predictions. The induced gap voltage is typically smaller than the gap of the Nb superconducting electrode, especially in the presence of an intentional tunnel barrier. Additional uncovered spectroscopic features are oscillations that are linearly spaced in energy, as well as a possible second order parameter component.Comment: Semiconductor Science and Technology; Special Issue on Hybrid Quantum Materials and Device

    Single-Shot Electron Diffraction using a Cold Atom Electron Source

    Get PDF
    Cold atom electron sources are a promising alternative to traditional photocathode sources for use in ultrafast electron diffraction due to greatly reduced electron temperature at creation, and the potential for a corresponding increase in brightness. Here we demonstrate single-shot, nanosecond electron diffraction from monocrystalline gold using cold electron bunches generated in a cold atom electron source. The diffraction patterns have sufficient signal to allow registration of multiple single-shot images, generating an averaged image with significantly higher signal-to-noise ratio than obtained with unregistered averaging. Reflection high-energy electron diffraction (RHEED) was also demonstrated, showing that cold atom electron sources may be useful in resolving nanosecond dynamics of nanometre scale near-surface structures.Comment: This is an author-created, un-copyedited version of an article published in Journal of Physics B: Atomic, Molecular and Optical Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0953-4075/48/21/21400

    Comparing phenomenological recipes with a microscopic model for the electric amplitude in strangeness photoproduction

    Full text link
    Corrections to the Born approximation in photo-induced strangeness production off a proton are calculated in a semi-realistic microscopic model. The vertex corrections and internal contributions to the amplitude of the γp→K+Λ\gamma p \to K^+ \Lambda reaction are included on the one-loop level. Different gauge-invariant phenomenological prescriptions for the modification of the Born contribution via the introduction of form factors and contact terms are discussed. In particular, it is shown that the popular minimal-substitution method of Ohta corresponds to a special limit of the more realistic approach.Comment: 10 pages, 6 figures in the tex

    Microfabricated optofluidic ring resonator structures

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98683/1/ApplPhysLett_99_141108.pd

    A new limit on the Ultra-High-Energy Cosmic-Ray flux with the Westerbork Synthesis Radio Telescope

    Get PDF
    A particle cascade (shower) in a dielectric, for example as initiated by an ultra-high energy cosmic ray, will have an excess of electrons which will emit coherent \v{C}erenkov radiation, known as the Askaryan effect. In this work we study the case in which such a particle shower occurs in a medium just below its surface. We show, for the first time, that the radiation transmitted through the surface is independent of the depth of the shower below the surface when observed from far away, apart from trivial absorption effects. As a direct application we use the recent results of the NuMoon project, where a limit on the neutrino flux for energies above 102210^{22}\,eV was set using the Westerbork Synthesis Radio Telescope by measuring pulsed radio emission from the Moon, to set a limit on the flux of ultra-high-energy cosmic rays.Comment: Accepted for publication in Phys. Rev.

    Anharmonic Decay of Vibrational States in Amorphous Silicon

    Full text link
    Anharmonic decay rates are calculated for a realistic atomic model of amorphous silicon. The results show that the vibrational states decay on picosecond timescales and follow the two-mode density of states, similar to crystalline silicon, but somewhat faster. Surprisingly little change occurs for localized states. These results disagree with a recent experiment.Comment: 10 pages, 4 Postscript figure

    Current Results of the EC-sponsored Catchment Modelling (CatchMod) Cluster

    Get PDF
    To support the Water Framework Directive implementation, much research has been commissioned at both national and European levels. CatchMod is a cluster of these projects, which is focusing on the development of computational catchment models and related tools. This paper presents an overview of the results of the CatchMod cluster to dat
    • 

    corecore