746 research outputs found

    Effect of Maillard induced glycation on protein hydrolysis by lysine/arginine and non-lysine/arginine specific proteases

    Get PDF
    Enzymatic protein hydrolysis is sensitive to modifications of protein structure, e.g. Maillard reaction. In early stages of the reaction glycation takes place, modifying the protein primary structure. In later stages protein aggregation occurs. The specific effect of glycation on protein hydrolysis was studied using α-lactalbumin glycated with D-glucose at 50 °C (0–10 h). This resulted in proteins with different degrees of glycation (DG = 0–63%) without changes in secondary, tertiary and quaternary structure. These glycated proteins were hydrolyzed by lysine/arginine specific proteases (bovine and porcine trypsin) or by non-lysine/arginine specific proteases (Bacillus licheniformis protease (BLP), α-chymotrypsin and subtilisin A). For bovine and porcine trypsin, the maximal degree of hydrolysis decreased linearly with 65% from untreated to maximal glycated protein (DG = 63%). This means trypsin cannot hydrolyze glycated cleavage sites. BLP and subtilisin A hydrolyses were independent of glycation, while α-chymotrypsin cannot hydrolyze cleavage sites with glycated binding sites. This means for non-lysine/arginine specific proteases, the effect of glycation depends on the enzyme sensitivity towards modifications on binding sites. Since not all cleavage sites are efficiently used by the enzymes, the extent of the effects depends on the enzyme selectivity towards cleavage sites (for trypsin) or cleavage sites near glycation sites (for α-chymotrypsin). Combining the results of all proteases, an equation was derived describing the effect of modification of protein primary structure on the extent of hydrolysis based on the enzyme specificity, selectivity and binding site sensitivity

    Титульні сторінки та зміст

    Get PDF
    Colostrum oligosaccharides are known to exhibit prebiotic and immunomodulatory properties. Oligosaccharide composition is species-specific, and equine colostrum has been reported to contain unique oligosaccharides. Therefore, equine oligosaccharides (EMOS) from colostrum from different horse breeds were analyzed by CE-LIF, CE-MSn, HILIC-MSn, and exoglycosidase degradation. Sixteen EMOS were characterized and quantified, of which half were neutral and half were acidic. EMOS showed about 63% structural overlap with human milk oligosaccharides, known for their bioactivity. Seven EMOS were not reported before in equine oligosaccharides literature: neutral Gal(beta 1-4)HexNAc, Gal(beta 1-4)Hex-Hex, beta 4'-galactosyllactose, and lactose-N- hexaose, as well as acidic 6'-Sialyl-Hex-Ac-HexNAc, sialyllacto-N-tetraose-a, and disialylacto-N-tetraose (isomer not further specified). In all colostrum samples, the average oligosaccharide concentration ranged from 2.12 to 4.63 g/L; with beta 6'and 3'- galactosyllactose, 3'-sialyllactose, and disialyllactose as the most abundant of all oligosaccharides (27-59, 16-37, 1-8, and 1-6%, respectively). Differences in presence and in abundance of specific EMOS were evident not only between the four breeds but also within the breed

    Digestibility of resistant starch type 3 is affected by crystal type, molecular weight and molecular weight distribution

    Get PDF
    Resistant starch type 3 (RS-3) holds great potential as a prebiotic by supporting gut microbiota following intestinal digestion. However the factors influencing the digestibility of RS-3 are largely unknown. This research aims to reveal how crystal type and molecular weight (distribution) of RS-3 influence its resistance. Narrow and polydisperse α-glucans of degree of polymerization (DP) 14–76, either obtained by enzymatic synthesis or debranching amylopectins from different sources, were crystallized in 12 different A- or B-type crystals and in vitro digested. Crystal type had the largest influence on resistance to digestion (A >>> B), followed by molecular weight (Mw) (high DP >> low DP) and Mw distribution (narrow disperse > polydisperse). B-type crystals escaping digestion changed in Mw and Mw distribution compared to that in the original B-type crystals, whereas A-type crystals were unchanged. This indicates that pancreatic α-amylase binds and acts differently to A- or B-type RS-3 crystals.</p

    Inactivation of glycogen synthase kinase-3 beta (GSK-3 beta) enhances skeletal muscle oxidative metabolism

    Get PDF
    Background: Aberrant skeletal muscle mitochondrial oxidative metabolism is a debilitating feature of chronic diseases such as chronic obstructive pulmonary disease, type 2 diabetes and chronic heart failure. Evidence in non-muscle cells suggests that glycogen synthase kinase-3 beta (GSK-3 beta) represses mitochondrial biogenesis and inhibits PPAR-gamma co-activator 1 (PGC-1), a master regulator of cellular oxidative metabolism. The role of GSK-3 beta in the regulation of skeletal muscle oxidative metabolism is unknown. Aims: We hypothesized that inactivation of GSK-3 beta stimulates muscle oxidative metabolism by activating PGC-1 signaling and explored if GSK-3 beta inactivation could protect against physical inactivity-induced alterations in skeletal muscle oxidative metabolism. Methods: GSK-3 beta was modulated genetically and pharmacologically in C2C12 myotubes in vitro and in skeletal muscle in vivo. Wild-type and muscle-specific GSK-3 beta knock-out (KO) mice were subjected to hind limb suspension for 14 days. Key constituents of oxidative metabolism and PGC-1. signaling were investigated. Results: In vitro, knock-down of GSK-3 beta increased mitochondrial DNA copy number, protein and mRNA abundance of oxidative phosphorylation (OXPHOS) complexes and activity of oxidative metabolic enzymes but also enhanced protein and mRNA abundance of key PGC-1 signaling constituents. Similarly, pharmacological inhibition of GSK-3 beta increased transcript and protein abundance of key constituents and regulators of mitochondrial energy metabolism. Furthermore, GSK-3 beta KO animals were protected against unloading-induced decrements in expression levels of these constituents. Conclusion: Inactivation of GSK-3 beta up-regulates skeletal muscle mitochondrial metabolism and increases expression levels of PGC-1 signaling constituents. In vivo, GSK-3 beta KO protects against inactivity-induced reductions in muscle metabolic gene expression

    Dietary Isomalto/Malto-Polysaccharides Increase Fecal Bulk and Microbial Fermentation in Mice

    Get PDF
    Scope: The prevalence of metabolic-syndrome-related disease has strongly increased. Nutritional intervention strategies appear attractive, particularly with novel prebiotics. Isomalto/malto-polysaccharides (IMMPs) represent promising novel prebiotics that promote proliferation of beneficial bacteria in vitro. The present study investigates for the first time the in vivo effects of IMMP in mice. Methods and results: C57BL/6 wild-type mice received control or IMMP-containing (10%, w/w) diets for 3 weeks. IMMP leads to significantly more fecal bulk (+26%, p < 0.05), higher plasma non-esterified fatty acids (colorimetric assay, +10%, p < 0.05), and lower fecal dihydrocholesterol excretion (mass spectrometry, −50%, p < 0.05). Plasma and hepatic lipid levels (colorimetric assays following lipid extraction) are not influenced by dietary IMMP, as are other parameters of sterol metabolism, including bile acids (gas chromatography/mass spectrometry). IMMP is mainly fermented in the cecum and large intestine (high-performance anion exchange chromatography). Next-generation sequencing demonstrates higher relative abundance of Bacteroides and butyrate producers (Lachnospiraceae, Roseburia Odoribacter) in the IMMP group. Conclusion: The combined results demonstrate that IMMP administration to mice increases fecal bulk and induces potentially beneficial changes in the intestinal microbiota. Further studies are required in disease models to substantiate potential health benefits.</p

    Type of intrinsic resistant starch type 3 determines in vitro fermentation by pooled adult faecal inoculum

    Get PDF
    Resistant starch (RS) results in relatively high health-beneficial butyrate levels upon fermentation by gut microbiota. We studied how physico-chemical characteristics of RS-3 influenced butyrate production during fermentation. Six highly resistant RS-3 substrates (intrinsic RS-3, 80-95 % RS) differing in chain length (DPn 16-76), Mw distribution (PI) and crystal type (A/B) were fermented in vitro by pooled adult faecal inoculum. All intrinsic RS-3 substrates were fermented to relatively high butyrate levels (acetate/butyrate ≤ 2.5), and especially fermentation of A-type RS-3 prepared from polydisperse α-1,4 glucans resulted in the highest relative butyrate amount produced (acetate/butyrate: 1). Analysis of the microbiota composition after fermentation revealed that intrinsic RS-3 stimulated primarily Lachnospiraceae, Bifidobacterium and Ruminococcus, but the relative abundances of these taxa differed slightly depending on the RS-3 physico-chemical characteristics. Especially intrinsic RS-3 of narrow disperse Mw distribution stimulated relatively more Ruminococcus. Selected RS fractions (polydisperse Mw distribution) obtained after pre-digestion were fermented to acetate and butyrate (ratio ≤ 1.8) and stimulated Lachnospiraceae and Bifidobacterium. This study indicates that especially the α-1,4 glucan Mw distribution dependent microstructure of RS-3 influences butyrate production and microbiota composition during RS-3 fermentation.</p

    A prospective study of decline in fat free mass and skeletal muscle strength in chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Skeletal muscle depletion is an important complication of chronic obstructive pulmonary disease (COPD) but little prospective data exists about the rate at which it occurs and the factors that promote its development. We therefore prospectively investigated the impact of disease severity, exacerbation frequency and treatment with corticosteroids on change in body composition and maximum isometric quadriceps strength (QMVC) over one year. METHODS: 64 patients with stable COPD (FEV(1 )mean (SD) 35.8(18.4) %predicted) were recruited from clinic and studied on two occasions one year apart. Fat free mass was determined using bioelectrical impedance analysis and a disease specific regression equation. RESULTS: QMVC fell from 34.8(1.5) kg to 33.3(1.5) kg (p = 0.04). The decline in quadriceps strength was greatest in those with the highest strength at baseline (R -0.28 p = 0.02) and was not correlated with lung function, exacerbation frequency or steroid treatment. Decline in fat free mass was similarly higher in those with largest FFM at baseline (R = -0.31 p = 0.01) but was more strongly correlated with greater gas trapping (R = -0.4 p = 0.001). Patients with frequent exacerbations (>1 per year) (n = 36) experienced a greater decline in fat free mass compared to infrequent exacerbators (n = 28) -1.3(3.7)kg vs. +1.2(3.1)kg (p = 0.005), as did patients on maintenance oral steroids (n = 8) -2.8(3.3) kg vs. +0.2(3.5) kg (p = 0.024) whereas in those who stopped smoking (n = 7) fat free mass increased; +2.7(3.1) kg vs. -0.51(3.5) kg (p = 0.026). CONCLUSION: Decline in fat free mass in COPD is associated with worse lung function, continued cigarette consumption and frequent exacerbations. Factors predicting progression of quadriceps weakness could not be identified from the present cohort

    Experienced Quality of Post-Acute and Long-Term Care From the Care Recipient's Perspective-A Conceptual Framework

    Get PDF
    This article aims to conceptualize experienced quality of post-acute and long-term care for older people as perceived by care recipients. An iterative literature review and consultations with stakeholders led to the development of the INDividually Experienced QUAlity of Long-term care (INDEXQUAL) framework. INDEXQUAL presents the process of an individual care experience consisting of a pre (expectations), during (experiences), and post (assessment) phase. Expectations are formed prior to an experience by personal needs, past experiences, and word-of-mouth. An experience follows, which consists of interactions between the players in the caring relationships. Lastly, this experience is assessed by addressing what happened and how it happened (perceived care services), how this influenced the care recipient's health status (perceived care outcomes), and how this made the care recipient feel (satisfaction). INDEXQUAL can serve as a framework to select or develop methods to assess experienced quality of long-term care. It can provide a framework for quality monitoring, improvement, and transparency. (C) 2019 AMDA - The Society for Post-Acute and Long-Term Care Medicine
    corecore