605 research outputs found

    Титульні сторінки та зміст

    Get PDF
    Colostrum oligosaccharides are known to exhibit prebiotic and immunomodulatory properties. Oligosaccharide composition is species-specific, and equine colostrum has been reported to contain unique oligosaccharides. Therefore, equine oligosaccharides (EMOS) from colostrum from different horse breeds were analyzed by CE-LIF, CE-MSn, HILIC-MSn, and exoglycosidase degradation. Sixteen EMOS were characterized and quantified, of which half were neutral and half were acidic. EMOS showed about 63% structural overlap with human milk oligosaccharides, known for their bioactivity. Seven EMOS were not reported before in equine oligosaccharides literature: neutral Gal(beta 1-4)HexNAc, Gal(beta 1-4)Hex-Hex, beta 4'-galactosyllactose, and lactose-N- hexaose, as well as acidic 6'-Sialyl-Hex-Ac-HexNAc, sialyllacto-N-tetraose-a, and disialylacto-N-tetraose (isomer not further specified). In all colostrum samples, the average oligosaccharide concentration ranged from 2.12 to 4.63 g/L; with beta 6'and 3'- galactosyllactose, 3'-sialyllactose, and disialyllactose as the most abundant of all oligosaccharides (27-59, 16-37, 1-8, and 1-6%, respectively). Differences in presence and in abundance of specific EMOS were evident not only between the four breeds but also within the breed

    Digestibility of resistant starch type 3 is affected by crystal type, molecular weight and molecular weight distribution

    Get PDF
    Resistant starch type 3 (RS-3) holds great potential as a prebiotic by supporting gut microbiota following intestinal digestion. However the factors influencing the digestibility of RS-3 are largely unknown. This research aims to reveal how crystal type and molecular weight (distribution) of RS-3 influence its resistance. Narrow and polydisperse α-glucans of degree of polymerization (DP) 14–76, either obtained by enzymatic synthesis or debranching amylopectins from different sources, were crystallized in 12 different A- or B-type crystals and in vitro digested. Crystal type had the largest influence on resistance to digestion (A >>> B), followed by molecular weight (Mw) (high DP >> low DP) and Mw distribution (narrow disperse > polydisperse). B-type crystals escaping digestion changed in Mw and Mw distribution compared to that in the original B-type crystals, whereas A-type crystals were unchanged. This indicates that pancreatic α-amylase binds and acts differently to A- or B-type RS-3 crystals.</p

    Inactivation of glycogen synthase kinase-3 beta (GSK-3 beta) enhances skeletal muscle oxidative metabolism

    Get PDF
    Background: Aberrant skeletal muscle mitochondrial oxidative metabolism is a debilitating feature of chronic diseases such as chronic obstructive pulmonary disease, type 2 diabetes and chronic heart failure. Evidence in non-muscle cells suggests that glycogen synthase kinase-3 beta (GSK-3 beta) represses mitochondrial biogenesis and inhibits PPAR-gamma co-activator 1 (PGC-1), a master regulator of cellular oxidative metabolism. The role of GSK-3 beta in the regulation of skeletal muscle oxidative metabolism is unknown. Aims: We hypothesized that inactivation of GSK-3 beta stimulates muscle oxidative metabolism by activating PGC-1 signaling and explored if GSK-3 beta inactivation could protect against physical inactivity-induced alterations in skeletal muscle oxidative metabolism. Methods: GSK-3 beta was modulated genetically and pharmacologically in C2C12 myotubes in vitro and in skeletal muscle in vivo. Wild-type and muscle-specific GSK-3 beta knock-out (KO) mice were subjected to hind limb suspension for 14 days. Key constituents of oxidative metabolism and PGC-1. signaling were investigated. Results: In vitro, knock-down of GSK-3 beta increased mitochondrial DNA copy number, protein and mRNA abundance of oxidative phosphorylation (OXPHOS) complexes and activity of oxidative metabolic enzymes but also enhanced protein and mRNA abundance of key PGC-1 signaling constituents. Similarly, pharmacological inhibition of GSK-3 beta increased transcript and protein abundance of key constituents and regulators of mitochondrial energy metabolism. Furthermore, GSK-3 beta KO animals were protected against unloading-induced decrements in expression levels of these constituents. Conclusion: Inactivation of GSK-3 beta up-regulates skeletal muscle mitochondrial metabolism and increases expression levels of PGC-1 signaling constituents. In vivo, GSK-3 beta KO protects against inactivity-induced reductions in muscle metabolic gene expression

    Dietary Isomalto/Malto-Polysaccharides Increase Fecal Bulk and Microbial Fermentation in Mice

    Get PDF
    Scope: The prevalence of metabolic-syndrome-related disease has strongly increased. Nutritional intervention strategies appear attractive, particularly with novel prebiotics. Isomalto/malto-polysaccharides (IMMPs) represent promising novel prebiotics that promote proliferation of beneficial bacteria in vitro. The present study investigates for the first time the in vivo effects of IMMP in mice. Methods and results: C57BL/6 wild-type mice received control or IMMP-containing (10%, w/w) diets for 3 weeks. IMMP leads to significantly more fecal bulk (+26%, p < 0.05), higher plasma non-esterified fatty acids (colorimetric assay, +10%, p < 0.05), and lower fecal dihydrocholesterol excretion (mass spectrometry, −50%, p < 0.05). Plasma and hepatic lipid levels (colorimetric assays following lipid extraction) are not influenced by dietary IMMP, as are other parameters of sterol metabolism, including bile acids (gas chromatography/mass spectrometry). IMMP is mainly fermented in the cecum and large intestine (high-performance anion exchange chromatography). Next-generation sequencing demonstrates higher relative abundance of Bacteroides and butyrate producers (Lachnospiraceae, Roseburia Odoribacter) in the IMMP group. Conclusion: The combined results demonstrate that IMMP administration to mice increases fecal bulk and induces potentially beneficial changes in the intestinal microbiota. Further studies are required in disease models to substantiate potential health benefits.</p

    Experienced Quality of Post-Acute and Long-Term Care From the Care Recipient's Perspective-A Conceptual Framework

    Get PDF
    This article aims to conceptualize experienced quality of post-acute and long-term care for older people as perceived by care recipients. An iterative literature review and consultations with stakeholders led to the development of the INDividually Experienced QUAlity of Long-term care (INDEXQUAL) framework. INDEXQUAL presents the process of an individual care experience consisting of a pre (expectations), during (experiences), and post (assessment) phase. Expectations are formed prior to an experience by personal needs, past experiences, and word-of-mouth. An experience follows, which consists of interactions between the players in the caring relationships. Lastly, this experience is assessed by addressing what happened and how it happened (perceived care services), how this influenced the care recipient's health status (perceived care outcomes), and how this made the care recipient feel (satisfaction). INDEXQUAL can serve as a framework to select or develop methods to assess experienced quality of long-term care. It can provide a framework for quality monitoring, improvement, and transparency. (C) 2019 AMDA - The Society for Post-Acute and Long-Term Care Medicine

    Pectins from various sources inhibit galectin-3-related cardiac fibrosis

    Get PDF
    Purpose of the study: A major challenge in cardiology remains in finding a therapy for cardiac fibrosis. Inhibition of galectin-3 with pectins attenuates fibrosis in animal models of heart failure. The purpose of this study is to identify pectins with the strongest galectin-3 inhibitory capacity. We evaluated the in vitro inhibitory capacity, identified potent pectins, and tested if this potency could be validated in a mouse model of myocardial fibrosis. Methods: Various pectin fractions were screened in vitro. Modified rhubarb pectin (EMRP) was identified as the most potent inhibitor of galectin-3 and compared to the well-known modified citrus pectin (MCP). Our findings were validated in a mouse model of myocardial fibrosis, which was induced by angiotensin II (Ang II) infusion. Results: Ang II infusion was associated with a 4–5-fold increase in fibrosis signal in the tissue of the left ventricle, compared to the control group (0•22±0•10 to 1•08±0•53%; P < 0•001). After treatment with rhubarb pectin, fibrosis was reduced by 57% vs. Ang II alone while this reduction was 30% with the well-known MCP (P = NS, P < 0•05). Treatment was associated with a reduced cardiac inflammatory response and preserved cardiac function. Conclusion: The galectin-3 inhibitor natural rhubarb pectin has a superior inhibitory capacity over established pectins, substantially attenuates cardiac fibrosis, and preserves cardiac function in vivo. Bioactive pectins are natural sources of galectin-3 inhibitors and may be helpful in the prevention of heart failure or other diseases characterized by fibrosis. Funding: Dr. Meijers is supported by the Mandema-Stipendium of the Junior Scientific Masterclass 2020-10, University Medical Center Groningen and by the Netherlands Heart Foundation (Dekkerbeurs 2021)Dr. de Boer is supported by the Netherlands Heart Foundation (CVON SHE-PREDICTS-HF, grant 2017-21; CVON RED-CVD, grant 2017-11; CVON PREDICT2, grant 2018-30; and CVON DOUBLE DOSE, grant 2020B005), by a grant from the leDucq Foundation (Cure PhosphoLambaN induced Cardiomyopathy (Cure-PLaN), and by a grant from the European Research Council (ERC CoG 818715, SECRETE-HF)

    Effect of the prebiotic fiber inulin on cholesterol metabolism in wildtype mice

    Get PDF
    Dietary non-digestible carbohydrates are perceived to improve health via gut microbiota-dependent generation of products such as short-chain fatty acids (SCFA). In addition, SCFA are also precursors for lipid and cholesterol synthesis potentially resulting in unwanted effects on lipid metabolism. Inulin is a widely used model prebiotic dietary fiber. Inconsistent reports on the effects of inulin on cholesterol homeostasis have emerged in humans and preclinical models. To clarify this issue, the present study aimed to provide an in-depth characterization of the effects of short-chain (sc)- and long-chain (lc)- inulin on cholesterol synthesis, absorption and elimination in mice. Feeding wildtype C57BL/6J mice diets supplemented with 10% (w/w) of either sc- or lc-inulin for two weeks resulted in approximately 2.5-fold higher fecal SCFA levels (P < 0.01) compared with controls, but had no significant effects on plasma and liver lipids. Subtle shifts in fecal and plasma bile acid species were detected with beta-muricholic acid increasing significantly in plasma of the inulin fed groups (1.7-fold, P < 0.05). However, neither sc-inulin nor lc-inulin affected intestinal cholesterol absorption, mass fecal cholesterol excretion or trans-intestinal cholesterol excretion (TICE). Combined, our data demonstrate that sc- and lc-inulin have no adverse effects on cholesterol metabolism in mice despite increased generation of SCFA.</p
    corecore