2,609 research outputs found

    Above ground woody community attributes, biomass and carbon stocks along a rainfall gradient in the savannas of the central lowveld, South Africa

    Get PDF
    Enumeration of carbon stocks at benchmark sites is a necessary activity in assessing the potential carbon sequestration and possible generation of credits through restoration of intensively impacted sites. However, there is a lack of empirical studies throughout much of the savannas of sub-Saharan Africa, including South Africa. We report an estimation of species specific and site biomass and carbon stocks, and general vegetation structural attributes from three protected areas along a rainfall gradient in the central lowveld, South Africa. Estimates of biomass and carbon stocks were effected through destructive sampling to establish locally derived allometric equations. There was a gradient of increasing woody density, height of the canopy, number of species, density of regenerative stems and a greater proportion of stems in small size classes from the arid locality to the mesic locality, with the semi-arid locality being intermediate. The proportion of spinescent species decreased with increasing rainfall. The mesic locality was significantly more woody than either the arid or semi-arid sites, having double the biomass, four times the density and 40% higher basal area. Above ground carbon pools were also higher; carbon stocks were approximately 9 t/ha for the arid and semi-arid sites and 18 t/ha for the mesic site

    Droughts and the ecological future of tropical savanna vegetation

    Get PDF
    1. Climate change is expected to lead to more frequent, intense and longer droughts in the future, with major implications for ecosystem processes and human livelihoods. The impacts of such droughts are already evident, with vegetation dieback reported from a range of ecosystems, including savannas, in recent years. 2. Most of our insights into the mechanisms governing vegetation drought responses have come from forests and temperate grasslands, while responses of savannas have received less attention. Because the two life forms that dominate savannas—C3 trees and C4 grasses—respond differently to the same environmental controls, savanna responses to droughts can differ from those of forests and grasslands. 3. Drought‐driven mortality of savanna vegetation is not readily predicted by just plant drought‐tolerance traits alone, but is the net outcome of multiple factors, including drought‐avoidance strategies, landscape and neighborhood context, and impacts of past and current stressors including fire, herbivory and inter‐life form competition. 4. Many savannas currently appear to have the capacity to recover from moderate to severe short‐term droughts, although recovery times can be substantial. Factors facilitating recovery include the resprouting ability of vegetation, enhanced flowering and seeding and post‐drought amelioration of herbivory and fire. Future increases in drought severity, length and frequency can interrupt recovery trajectories and lead to compositional shifts, and thus pose substantial threats, particularly to arid and semi‐arid savannas. 5. Synthesis. Our understanding of, and ability to predict, savanna drought responses is currently limited by availability of relevant data, and there is an urgent need for campaigns quantifying drought‐survival traits across diverse savannas. Importantly, these campaigns must move beyond reliance on a limited set of plant functional traits to identifying suites of physiological, morphological, anatomical and structural traits or “syndromes” that encapsulate both avoidance and tolerance strategies. There is also a critical need for a global network of long‐term savanna monitoring sites as these can provide key insights into factors influencing both resistance and resilience of different savannas to droughts. Such efforts, coupled with site‐specific rainfall manipulation experiments that characterize plant trait–drought response relationships, and modelling efforts, will enable a more comprehensive understanding of savanna drought responses

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models

    Exploring the protonation properties of photosynthetic phycobiliprotein pigments from molecular modeling and spectral line shapes

    Get PDF
    In photosynthesis, specialized light harvesting pigment- protein complexes (PPCs) are used to capture incident sunlight and funnel its energy to the reaction center. In Cryptophyte algae these complexes are suspended in the lumen, where the pH ranges between ~5-7, depending on the prolongation of the incident sunlight. However, the pKa of the several kinds of bilin chromophores encountered in these complexes and the effect of its protonation state on the energy transfer process is still unknown. Here, we combine quantum chemical and continuum solvent calculations to estimate the intrinsic aqueous pKas of different bilin pigments. We then use Propka and APBS classical electrostatic calculations to estimate the change in protonation free energies when the bilins are embedded inside five different phycobiliproteins (PE545, PC577, PC612, PC630 and PC645), and critically asses our results by analysis of the changes in the absorption spectral line shapes measured within a pH range from 4.0 to 9.4. Our results suggest that each individual protein environment strongly impacts the intrinsic pKa of the different chomophores, being the final responsible of their protonation state

    Modifiable risk factors for 9-year mortality in older English and Brazilian adults: The ELSA and SIGa-Bagé ageing cohorts

    Get PDF
    To quantify and compare 9-year all-cause mortality risk attributable to modifiable risk factors among older English and Brazilian adults. We used data for participants aged 60 years and older from the English Longitudinal Study of Ageing (ELSA) and the BagĂ© Cohort Study of Ageing (SIGa-BagĂ©). The five modifiable risk factors assessed at baseline were smoking, hypertension, diabetes, obesity and physical inactivity. Deaths were identified through linkage to mortality registers. For each risk factor, estimated all-cause mortality hazard ratios (HR) and population attributable fractions (PAF) were adjusted by age, sex, all other risk factors and socioeconomic position (wealth) using Cox proportional hazards modelling. We also quantified the risk factor adjusted wealth gradients in mortality, by age and sex. Among the participants, 659 (ELSA) and 638 (SIGa-BagĂ©) died during the 9-year follow-up. Mortality rates were higher in SIGa-BagĂ©. HRs and PAFs showed more similarities than differences, with physical inactivity (PAF 16.5% ELSA; 16.7% SIGa-BagĂ©) and current smoking (PAF 4.9% for both cohorts) having the strongest association. A clear graded relationship existed between the number of risk factors and subsequent mortality. Wealth gradients in mortality were apparent in both cohorts after full adjustment, especially among men aged 60-74 in ELSA. A different pattern was found among older women, especially in SIGa-BagĂ©. These findings call attention for the challenge to health systems to prevent and modify the major risk factors related to non-communicable diseases, especially physical inactivity and smoking. Furthermore, wealth inequalities in mortality persist among older adults

    Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils

    Get PDF
    Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting, and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that, although soils are complex, there are still knowledge gaps, and fundamental research is still needed to better understand the relationships between different facets of soils and the array of ecosystem services they underpin, enough is known to implement best practices now. There is a tendency among soil scientists to dwell on the complexity and knowledge gaps rather than to focus on what we do know and how this knowledge can be put to use to improve the delivery of ecosystem services. A significant challenge is to find effective ways to share knowledge with soil managers and policy makers so that best management can be implemented. A key element of this knowledge exchange must be to raise awareness of the ecosystems services underpinned by soils and thus the natural capital they provide. We know enough to start moving in the right direction while we conduct research to fill in our knowledge gaps. The lasting legacy of the International Year of Soils in 2015 should be for soil scientists to work together with policy makers and land managers to put soils at the centre of environmental policy making and land management decisions.</p

    Exciton bimolecular annihilation dynamics in supramolecular nanostructures of conjugated oligomers

    Get PDF
    We present femtosecond transient absorption measurements on π\pi-conjugated supramolecular assemblies in a high pump fluence regime. Oligo(\emph{p}-phenylenevinylene) monofunctionalized with ureido-\emph{s}-triazine (MOPV) self-assembles into chiral stacks in dodecane solution below 75∘^{\circ}C at a concentration of 4×10−44\times 10^{-4} M. We observe exciton bimolecular annihilation in MOPV stacks at high excitation fluence, indicated by the fluence-dependent decay of 111^1Bu_{u}-exciton spectral signatures, and by the sub-linear fluence dependence of time- and wavelength-integrated photoluminescence (PL) intensity. These two characteristics are much less pronounced in MOPV solution where the phase equilibrium is shifted significantly away from supramolecular assembly, slightly below the transition temperature. A mesoscopic rate-equation model is applied to extract the bimolecular annihilation rate constant from the excitation fluence dependence of transient absorption and PL signals. The results demonstrate that the bimolecular annihilation rate is very high with a square-root dependence in time. The exciton annihilation results from a combination of fast exciton diffusion and resonance energy transfer. The supramolecular nanostructures studied here have electronic properties that are intermediate between molecular aggregates and polymeric semiconductors

    Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa

    Get PDF
    Inter-annual variability in primary production and ecosystem respiration was explored using eddy-covariance data at a semi-arid savanna site in the Kruger Park, South Africa. New methods of extrapolating night-time respiration to the entire day and filling gaps in eddy-covariance data in semi-arid systems were developed. Net ecosystem exchange (NEE) in these systems occurs as pulses associated with rainfall events, a pattern not well-represented in current standard gap-filling procedures developed primarily for temperate flux sites. They furthermore do not take into account the decrease in respiration at high soil temperatures. An artificial neural network (ANN) model incorporating these features predicted measured fluxes accurately (MAE 0.42 gC/m&lt;sup&gt;2&lt;/sup&gt;/day), and was able to represent the seasonal patterns of photosynthesis and respiration at the site. The amount of green leaf area (indexed using satellite-derived estimates of fractional interception of photosynthetically active radiation &lt;i&gt;f&lt;/i&gt;&lt;sub&gt;APAR&lt;/sub&gt;), and the timing and magnitude of rainfall events, were the two most important predictors used in the ANN model. These drivers were also identified by multiple linear regressions (MLR), with strong interactive effects. The annual integral of the filled NEE data was found to range from &amp;minus;138 to +155 g C/m&lt;sup&gt;2&lt;/sup&gt;/y over the 5 year eddy covariance measurement period. When applied to a 25 year time series of meteorological data, the ANN model predicts an annual mean NEE of 75(&amp;plusmn;105) g C/m&lt;sup&gt;2&lt;/sup&gt;/y. The main correlates of this inter-annual variability were found to be variation in the amount of absorbed photosynthetically active radiation (APAR), length of the growing season, and number of days in the year when moisture was available in the soil

    Financial correlations at ultra-high frequency: theoretical models and empirical estimation

    Full text link
    A detailed analysis of correlation between stock returns at high frequency is compared with simple models of random walks. We focus in particular on the dependence of correlations on time scales - the so-called Epps effect. This provides a characterization of stochastic models of stock price returns which is appropriate at very high frequency.Comment: 22 pages, 8 figures, 1 table, version to appear in EPJ

    Transparency, trust and minimizing burden to increase recruitment and retentio in trials: A systematic review

    Get PDF
    Objective: To describe patient perspectives on recruitment and retention in clinical trials. Study Design and Setting: Systematic review of qualitative studies that reported the perspective of adult patients with any health condition who accepted or declined to participate in clinical trials. Results: Sixty-three articles involving 1681 adult patients were included. Six themes were identified. Four themes reflected barriers: ambiguity of context and benefit – patients were unaware of the research question and felt pressured in making decisions; lacking awareness of opportunities – some believed health professionals obscured trials opportunities, or felt confused because of language barriers; wary of added burden – patients were without capacity because of sickness or competing priorities; and skepticism, fear and mistrust – patients feared loss of privacy, were suspicious of doctor's motivation, afraid of being a guinea pig, and disengaged from not knowing outcomes. Two themes captured facilitators: building confidence – patients hoped for better treatment, were supported from family members and trusted medical staff; and social gains and belonging to the community – altruism, a sense of belonging and peer encouragement motivated participation in trials. Conclusion: Improving the visibility and transparency of trials, supporting informed decision making, minimizing burden, and ensuring confidence and trust may improve patient participation in trials
    • 

    corecore