4,728 research outputs found

    Analysis of the human diseasome reveals phenotype modules across common, genetic, and infectious diseases

    Get PDF
    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text- mining approach to identify the phenotypes (signs and symptoms) associated with over 8,000 diseases. We demonstrate that our method generates phenotypes that correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that share signs and symptoms cluster together, and we use this network to identify phenotypic disease modules

    Structural determination of archaeal UDP-N-acetylglucosamine 4-epimerase from Methanobrevibacter ruminantium M1 in complex with the bacterial cell wall intermediate UDP-N-acetylmuramic acid

    Get PDF
    The crystal structure of UDP-N-acetylglucosamine 4-epimerase (UDP-GlcNAc 4-epimerase; WbpP; EC 5.1.3.7), from the archaeal methanogen Methanobrevibacter ruminantium strain M1, was determined to a resolution of 1.65 Ã…. The structure, with a single monomer in the crystallographic asymmetric unit, contained a conserved N-terminal Rossmann fold for nucleotide binding and an active site positioned in the C-terminus. UDP-GlcNAc 4-epimerase is a member of the short-chain dehydrogenase/reductase superfamily, sharing sequence motifs and structural elements characteristic of this family of oxidoreductases and bacterial 4-epimerases. The protein was co-crystallized with coenzyme NADH and UDP-N-acetylmuramic acid, the latter an unintended inclusion and well known product of the bacterial enzyme MurB and a critical intermediate for bacterial cell wall synthesis. This is a non-native UDP sugar amongst archaea and was most likely incorporated from the Eschericha coli expression host during purification of the recombinant enzyme

    Symmetric quivers, invariant theory, and saturation theorems for the classical groups

    Get PDF
    Let G denote either a special orthogonal group or a symplectic group defined over the complex numbers. We prove the following saturation result for G: given dominant weights \lambda^1, ..., \lambda^r such that the tensor product V_{N\lambda^1} \otimes ... \otimes V_{N\lambda^r} contains nonzero G-invariants for some N \ge 1, we show that the tensor product V_{2\lambda^1} \otimes ... \otimes V_{2\lambda^r} also contains nonzero G-invariants. This extends results of Kapovich-Millson and Belkale-Kumar and complements similar results for the general linear group due to Knutson-Tao and Derksen-Weyman. Our techniques involve the invariant theory of quivers equipped with an involution and the generic representation theory of certain quivers with relations.Comment: 29 pages, no figures; v2: updated Theorem 2.4 to odd characteristic, added Remark 3.9, added references, corrected some definitions and typo

    The statistics of particle velocities in dense granular flows

    Full text link
    We present measurements of the particle velocity distribution in the flow of granular material through vertical channels. Our study is confined to dense, slow flows where the material shears like a fluid only in thin layers adjacent to the walls, while a large core moves without continuous deformation, like a solid. We find the velocity distribution to be non-Gaussian, anisotropic, and to follow a power law at large velocities. Remarkably, the distribution is identical in the fluid-like and solid-like regions. The velocity variance is maximum at the core, defying predictions of hydrodynamic theories. We show evidence of spatially correlated motion, and propose a mechanism for the generation of fluctuational motion in the absence of shear.Comment: Submitted to Phys. Rev. Let

    The role of ontologies in biological and biomedical research: a functional perspective.

    Get PDF
    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/bib/bbv01

    The Units Ontology: a tool for integrating units of measurement in science

    Get PDF
    Units are basic scientific tools that render meaning to numerical data. Their standardization and formalization caters for the report, exchange, process, reproducibility and integration of quantitative measurements. Ontologies are means that facilitate the integration of data and knowledge allowing interoperability and semantic information processing between diverse biomedical resources and domains. Here, we present the Units Ontology (UO), an ontology currently being used in many scientific resources for the standardized description of units of measurements

    The anatomy of phenotype ontologies: principles, properties and applications

    Get PDF
    The past decade has seen an explosion in the collection of genotype data in domains as diverse as medicine, ecology, livestock and plant breeding. Along with this comes the challenge of dealing with the related phenotype data, which is not only large but also highly multidimensional. Computational analysis of phenotypes has therefore become critical for our ability to understand the biological meaning of genomic data in the biological sciences. At the heart of computational phenotype analysis are the phenotype ontologies. A large number of these ontologies have been developed across many domains, and we are now at a point where the knowledge captured in the structure of these ontologies can be used for the integration and analysis of large interrelated data sets. The Phenotype And Trait Ontology framework provides a method for formal definitions of phenotypes and associated data sets and has proved to be key to our ability to develop methods for the integration and analysis of phenotype data. Here, we describe the development and products of the ontological approach to phenotype capture, the formal content of phenotype ontologies and how their content can be used computationally.The National Science Foundation (IOS:1340112 to G.V.G.), the European Commission H2020 (grant agreement number 731075) to G.V.G. and the King Abdullah University of Science and Technology (to R.H.)

    The mouse pathology ontology, MPATH; structure and applications

    Get PDF
    BACKGROUND: The capture and use of disease-related anatomic pathology data for both model organism phenotyping and human clinical practice requires a relatively simple nomenclature and coding system that can be integrated into data collection platforms (such as computerized medical record-keeping systems) to enable the pathologist to rapidly screen and accurately record observations. The MPATH ontology was originally constructed in 2,000 by a committee of pathologists for the annotation of rodent histopathology images, but is now widely used for coding and analysis of disease and phenotype data for rodents, humans and zebrafish. CONSTRUCTION AND CONTENT: MPATH is divided into two main branches describing pathological processes and structures based on traditional histopathological principles. It does not aim to include definitive diagnoses, which would generally be regarded as disease concepts. It contains 888 core pathology terms in an almost exclusively is_a hierarchy nine layers deep. Currently, 86% of the terms have textual definitions and contain relationships as well as logical axioms to other ontologies such the Gene Ontology. APPLICATION AND UTILITY: MPATH was originally devised for the annotation of histopathological images from mice but is now being used much more widely in the recording of diagnostic and phenotypic data from both mice and humans, and in the construction of logical definitions for phenotype and disease ontologies. We discuss the use of MPATH to generate cross-products with qualifiers derived from a subset of the Phenotype and Trait Ontology (PATO) and its application to large-scale high-throughput phenotyping studies. MPATH provides a largely species-agnostic ontology for the descriptions of anatomic pathology, which can be applied to most amniotes and is now finding extensive use in species other than mice. It enables investigators to interrogate large datasets at a variety of depths, use semantic analysis to identify the relations between diseases in different species and integrate pathology data with other data types, such as pharmacogenomics

    The missing N1 or jittered P2: Electrophysiological correlates of pattern glare in the time and frequency domain

    Get PDF
    Excessive sensitivity to certain visual stimuli (cortical hyperexcitability) is associated with a number of neurological disorders including migraine, epilepsy, multiple sclerosis, autism and possibly dyslexia. Others show disruptive sensitivity to visual stimuli with no other obvious pathology or symptom profile (visual stress) which can extend to discomfort and nausea. We used event-related potentials (ERPs) to explore the neural correlates of visual stress and headache proneness. We analysed ERPs in response to thick (0.37 cycles per degree [c/deg]), medium (3 c/deg) and thin (12 c/deg) gratings, using mass univariate analysis, considering three factors in the general population: headache proneness, visual stress and discomfort. We found relationships between ERP features and the headache and discomfort factors. Stimulus main effects were driven by the medium stimulus regardless of participant characteristics. Participants with high discomfort ratings had larger P1 components for the initial presentation of medium stimuli, suggesting initial cortical hyperexcitability that is later suppressed. The participants with high headache ratings showed atypical N1-P2 components for medium stripes relative to the other stimuli. This effect was present only after repeated stimulus presentation. These effects were also explored in the frequency domain, suggesting variations in intertrial theta band phase coherence. Our results suggest that discomfort and headache in response to striped stimuli are related to different neural processes; however, more exploration is needed to determine whether the results translate to a clinical migraine population
    • …
    corecore