
The role of ontologies in biological and biomedical

research: a functional perspective
Robert Hoehndorf, Paul N. Schofield and Georgios V. Gkoutos
Corresponding author. Robert Hoehndorf, Computational Bioscience Research Center, King Abdullah University of Science and Technology, 4700 KAUST,
P.O. Box 2882, 23955-6900 Thuwal, Kingdom of Saudi Arabia. Tel.: +966-12-8081643; Fax: þ966-12-8021344. Email: robert.hoehndorf@kaust.edu.sa

Abstract

Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main
features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the
phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended
meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that
enable computational access to some aspects of the meaning of classes and relations. While each of these features enables
applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining
these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional
perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be
used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in
particular their application in structured data mining and machine learning applications.
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Introduction

The past 15 years have seen a revolution in the volume and
complexity of data created in the life sciences, and with the in-
crease in available data, the need for data management, inte-
gration and analysis has become an increasingly important
challenge. The use of ontologies began in the biological
sciences around 1998 with the development of the Gene
Ontology (GO) [1]. By 2007, there was sufficient interest and
activity in the area to merit national and international
coordination efforts such as the Open Biomedical Ontologies
(OBO) Foundry [2] or the National Center for Biomedical
Ontologies [3].

Many definitions of ‘ontology’ have been proposed in the lit-
erature [4–10], and classifications of different types of vocabula-
ries, thesauri, ontologies and knowledge bases have been
proposed, based on criteria such as their intended use, degree of
formalization or philosophical interpretation [2, 11–15].
Independent of the actual definition of what an ‘ontology’ is,
most artifacts labeled ‘ontologies’, as well as some ‘vocab-
ularies’ and ‘thesauri’, provide several main features, and these
features are used in almost all their applications (see Table 1):

i. classes and relations, referred to by an identifier such as an
Internationalized Resource Identifier (IRI), a Uniform
Resource Identifier (URI), or a database identifier string;
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ii. a domain vocabulary, i.e. a list of terms associated with the
ontology’s classes and relations;

iii. textual definitions and descriptions that provide additional
information about what kind of things a class or relation
refers to,

iv. formal definitions and axioms that provide a computational
counterpart to textual definitions and that can be accessed
and exploited automatically using specialized software (i.e.
automated reasoners) and axioms about a domain, i.e.
statements that are considered to be true within that do-
main and which provide background knowledge about a
domain.

Here, we discuss ontologies as artifacts containing these fea-
tures, and we use these features to provide a ‘functional’ per-
spective on ontologies (as well as other artifacts such as
thesauri, glossaries, semantic networks, or structured vocabula-
ries that provide a similar functionality). We illustrate how
these features can be exploited to enable or improve data ana-
lysis in biology and biomedicine, and how the combination of
these features makes data integration and data analysis across
traditional domain boundaries a reality.

A functional perspective on ontologies
Classes and relations

The principal components of ontologies are classes and rela-
tions. A ‘class’ is an entity that refers to a set of entities in the
world, such as the class ‘Protein’ (referring to the set of all pro-
teins), ‘Apoptosis’ (referring to the set of all apoptotic processes)
or ‘Red’ (referring to the set of all red qualities). However, in con-
trast to sets that are defined by their extension (i.e. the entities
that are part of the set), classes in ontologies are defined ‘inten-
sionally’ by specifying the properties, features and relations that
the entities belonging to a class must have [6, 9]. Relations are
similar to classes but hold for two or more entities. Examples are
the relations ‘part of’, ‘participates in’ or ‘quality of’.

In ontologies, classes and relations are commonly referred
to using a unique identifier. In the Semantic Web [16], this iden-
tifier is an IRI, which is a URI supporting Unicode characters. It
is still common to use database identifier strings in biomedical
databases to refer to classes and relation. For example, within
the OBO [2] community, an identifier for a class or relation in an
ontology consists of a prefix string, a colon and a series of digits
[17]. In Figure 1, PO:0009011 is an identifier for a class and
OBO_REL:0000002 an identifier for a relation, with the prefixes
PO and OBO_REL, respectively. In communities in which data-
base identifiers are still widely used, transformation policies
that standardize how database identifiers are transformed into

IRIs may be adopted. For example, within the OBO, PO:0009011
would be translated to the IRI http://purl.obolibrary.org/obo/PO_
0009011 [17].

Domain vocabulary

The second main feature that ontologies provide is a set of
labels associated with the classes and relations in the ontology.
Labels are strings that are used to refer to the kind of things a
class or relation represents. In ontologies, labels may be pro-
vided in multiple languages, and multiple labels may be as-
signed to one class. Additionally, a primary label may be
distinguished from secondary labels or synonyms. Such an as-
sertion signifies that, within the context of an ontology, the pri-
mary label is what is used to refer to a class or relation, while
the additional labels and synonyms are used to refer to the phe-
nomena captured by a class or a relation in other contexts.

In some ontologies or structured vocabularies, the (pri-
mary) label of a class is also used as component of the class
identifier (its IRI), but in the majority of ontologies the label
and the class identifier are maintained as distinct features, as
the label may change (in the simplest case owing to a misspell-
ing) while the intended meaning of the class remains the same
[18, 19]. The distinction between label and class identifiers ca-
ters for changing metadata associated with the class without
having to modify data that are already characterized with the
class identifier.

Provision of a domain vocabulary is a widely used feature of
ontologies. If an ontology aims to cover a domain completely,
the set of labels associated with the ontology classes and rela-
tions provide a large set of relevant terms within that domain.
For example, an ontology for human anatomy such as the
Foundational Model of Anatomy [20] will not only contain the
classes and relations relevant to describe human anatomy, but
also provide a large set of terms used to refer to human anatom-
ical structures and the ways in which they may be related (as
labels of the relations).

Textual definitions, descriptions and metadata

A third feature of ontologies is the provision of information
about the kind of phenomena a class or relation is supposed to
capture. The majority of ontologies contain two main kinds of
additional information: the first is intended primarily for users
of the ontology and provides textual definitions, examples and
background information that makes the intended meaning of a
class in the ontology as precise as possible to ontology users;
the second is additional technical information that relates one
class to entries in other databases, literature or other ontologies
and vocabularies.

Table 1. The main features provided by ontologies in support of biological and biomedical research

Ontology feature Utility in research

Classes and relations The use of standard identifiers for classes and relations in ontologies is what enables data integration across
multiple databases because the same identifiers can be used across multiple, disconnected databases, files, or
web sites.

Domain vocabulary Through labels associated with classes and relations, ontologies provide a domain vocabulary that can be ex-
ploited for applications ranging from natural language processing, creation of user interfaces, etc.

Metadata and descriptions Textual definitions, descriptions, examples and further metadata associated with classes in ontologies are what
enable domain experts to understand the precise meaning of class in the ontology. The definitions and related
metadata should allow consistent understanding of the meaning of classes in ontologies.

Axioms and formal
definitions

Formal definitions and axioms enable automated and computational access to (some parts of) the meaning of a
class or relation.
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Most ontologies in biomedicine that are primarily intended
for data annotation across multiple databases provide textual
definitions for their classes. There has been some discussion
about what constitutes a ‘good’ textual definition in ontologies
[21]. In some domains, ontology users have opted to use
Aristotelian definitions, i.e. definitions that state the general
kind of thing that a class or relation represents, coupled with
the properties that distinguish it from the general kind (the
‘genus–differentia’ model). For example, an ‘ovary septum’ can
be defined as a ‘septum’ (the general kind) that ‘divides a multi-
locular ovary’ (the conditions or properties that separate it from
others within the general kind). However, other types of textual
definitions are widely used as well [22]. Ideally, the textual def-
initions are sufficient for an ontology user to understand
exactly what kinds of phenomena a class in an ontology refers
to, and a ‘good’ definition does exactly that: it is understandable
to an ontology user and removes ambiguity in a term so that
different ontology users can apply it consistently.

Formal definitions and axioms

Finally, ontologies provide ‘formal’ and ‘machine-readable’
definitions and axioms. These are some of the most valuable fea-
tures of ontologies, as these may enable graph- and network-
based analyses, ‘fuzzy’ matches in searches, verification of data
consistency, as well as provide background knowledge about a
domain and reveal new knowledge through deductive inference.
The axioms and definitions of ontologies can be represented in
many forms. In some cases, they are expressed directly as a

graph structure that is intended to represent a taxonomy or a
partonomy. In other cases, axioms and definitions are written in
a formal language. For example, Figure 1 represents a part of an
ontology as a graph in which the edges ending with a white tri-
angle represent ‘taxonomic’ relationships and the edge labeled
‘part of’ represents a parthood relationship.

Ontologies are increasingly being expressed directly in a for-
mal language, and graph representations of ontologies are being
derived dynamically from this formal representation. Most
commonly, ontologies in the biological and biomedical domain
are represented in the Web Ontology Language (OWL) [23],
a formal language based on description logics [24, 25], or a
sub-language or profile of OWL such as OWL-EL [26]. The
graph-based OBO Flatfile Format, which is still used by several
ontologies (currently, in November 2014, 66 ontologies in the
OBO library are represented natively in the OBO Flatfile Format,
while 45 are represented natively in OWL), has now become a
sub-language of OWL [27] and can be processed with the same
tools and libraries used for OWL ontologies. Table 2 provides an
overview over different representation and query languages for
ontologies as well as key concepts centered around ontologies.

The construction of ontologies in a formal language often
follows—explicitly or implicitly—the axiomatic method [28].
According to the axiomatic method, knowledge about a domain
is formalized by first introducing a set of terms referring to
classes and relations in the domain (the classes and relations of
the ontology), and then explicitly defining these classes and re-
lations by reference to other terms or relations, and possibly
introducing new terms and relations. For example, the class

Figure 1. A part of the Plant Ontology. The figure shows classes as circles, labels and definitions in boxes and axioms as edges between classes. The label and definition

of the relation OBO_REL:0000002 is a label for an axiom pattern.

The role of ontologies in biological and biomedical research | 1071
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‘ovary septum’ (PO:0025262) in Figure 1 could be defined using
the OWL language as:

’ovary septum’ equivalentTo: septum and divides some

’multilocular ovary’

This definition states that the class on the left of equivalentTo:
(i.e. ‘ovary septum’) is equivalent to the expression on the right
of equivalentTo: (septum and divides some ’multilocular

ovary’), making ‘ovary septum’ a shorthand form of the com-
plex statement on the right (i.e. every occurrence of ‘ovary sep-
tum’ could be replaced with the expression on the right). A
definition alone does not add any information about the in-
tended meaning of a class: the meaning of ‘ovary septum’ now
depends entirely on the meaning of ‘septum’, ‘multilocular
ovary’ and the relation ‘divides’. Following the axiomatic
method, we can introduce further definitions for some of these
terms. For example, ‘multilocular ovary’ could be further defined:

’multilocular ovary’ equivalentTo: ovary and has-quality

some multilocular

Similarly, since this takes the form of an explicit definition
(through the use of the equivalentTo: keyword), we can now
replace every occurrence of ‘multilocular ovary’ with the expres-
sion on the righthand side. Applying this property of explicit
definitions, we can rewrite the definition of ‘ovary septum’ as:

’ovary septum’ equivalentTo: septum and divides some

(ovary and has-quality some multilocular)

Now, the meaning of the class ‘ovary septum’ depends on the
meaning of the classes ‘septum’, ‘ovary’, ‘multilocular’, as well
as the relations ‘divides’ and ‘has-quality’. We could continue
defining these classes by introducing additional classes and re-
lations. However, inevitably, we will come up with a set of
classes and relations that we cannot further define.

As a second step in the axiomatic method, we use the ontol-
ogy’s classes and relations in statements that we consider to be

true in the domain it is supposed to represent. These state-
ments are the axioms, which form the features of ontologies
that provide domain knowledge and fill the classes and rela-
tions with meaning. For example, we could state about the ‘has
quality’ relation that, if an entity x has the quality q, and an en-
tity y has the quality q, then x must be identical to y (i.e. a qual-
ity is always the quality of at most one entity). In OWL, we could
state this simply as:

ObjectProperty: ’has quality’

Characteristics: InverseFunctional

Another kind of axiom is the ‘subClassOf:’ axiom in which one
class is asserted to be a subclass of another class. A class X is a
subclass of Y if and only if all instances of X are also instances
of Y (i.e. all things satisfying the conditions for X also satisfy the
conditions for Y). In Figure 1, these axioms are illustrated as
arrows with white triangular pointers. Subclass axioms do not
always take the form of simple assertions of a subclass relation
between two named classes, but may involve more complex
class expressions as well. For example, the ‘part of’ axiom in
Figure 1 would be expressed in OWL as:

’ovary septum’ subClassOf: ’part of’ some gynoecium

Here, ‘ovary septum’ is a named class in the ontology while
’part of’ some gynoecium is a complex class expression
involving the relation ‘part of’, the named class ‘gynoecium’
and the existential quantifier some.

Ontologies that are formalized in OWL may contain many more
kinds of axioms [29], and some ontologies that are formalized in
more expressive languages than OWL, such as first- and second-
order predicate logic [30], may contain a large variety of axioms.
Examples of ontologies that are formalized at least in parts in such
expressive languages include the RNA Ontology [31], the Basic
Formal Ontology [32] or parts of the Sequence Ontology [33, 34].

The axioms and definitions in ontologies can give rise to a
graph structure that can be exploited using graph- and

Table 2. Query and representation languages, and key concepts around ontologies in biology

Language Description

Resource Description Framework
(RDF)

RDF [120] is a graph-based language in which resources are identified through their IRI and statements
take the form of triples (subject–predicate–object). Therefore, a set of RDF statements forms a labeled
directed graph. RDF also comes with a predefined vocabulary that can be used to state the type of a
resource (e.g. a class, or a literal) or represent relations between resources (e.g. labels of resources,
subclass relations between resources).

Web Ontology Language (OWL) OWL [23] is a language based on description logic and has a formal, model-theoretic semantics. Several
sub-languages of OWL have been developed, including OWL-DL, OWL-EL, OWL-RL, OWL-QL and OWL
Full, which support different language constructs, have different properties regarding decidability and
complexity of reasoning tasks, and therefore different areas of application.

SPARQL Protocol and RDF Query
Language (SPARQL)

SPARQL [121] is a standardized NoSQL query language, which can be used to query RDF databases and
supports query federation (i.e. querying data distributed across multiple databases). SPARQL can also
be used to query other kinds of data, including relational databases and flat files.

Linked Data Linked Data [122] represents a method of publishing and sharing data on the web. When publishing
Linked Data sets, data items are identified through a URI, and links to other data items are included in
the data set by explicitly referring to the URI that denotes the other items. The URIs used to denote
data items should be dereferencable, i.e. it should be possible to obtain additional information about
the item through the URI (depending on the method used to access the URI, the information could be
presented as HTML, RDF, JavaScript Object Notation or similar).

OBO Flatfile Format The OBO Flatfile Format [27] is a graph-based knowledge representation language widely used for
biological and biomedical ontologies. The majority of language constructs are compatible with OWL,
and bi-directional transformations between the OBO Flatfile Format and OWL have been implemented.

Proprietary graph-based ontology
representation formats

A number of graph-based representations of ontologies have been developed that primarily specify
labeled graphs. Examples include the representation of the Medical Subject Headings thesaurus [123],
the Unified Medical Language System [124] or the medical vocabulary SNOMED CT [125].
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network-based algorithms. In these graphs, nodes commonly
represent classes, and edges represent types of axioms that
hold between these classes [35]. In particular, ontologies give
rise to ‘taxonomic graphs’, which represent the subclass rela-
tions between the named classes in the ontology. Another pat-
tern that is frequently used in generating a graph structure
from ontology axioms is the existential restrictions on the ‘part
of’ relation to give rise to a partonomy [36]. Here, an edge
labeled ‘part of’ is generated between classes X and Y if X is a
subclass of ’part of’ some Y. Importantly, the label of the edge
between classes (e.g. ‘part of’) is different from the relation ‘part
of’ that holds between the instances of the class [37]; the label
of the edge is a shortcut for the complex axiom pattern involv-
ing the two classes (or a relation between the two classes that is
explicitly defined using such an axiom pattern).

Using ontologies

Several tools and methods have been developed that make use
of ontologies and support their use. These tools often focus on
one or two of the features of ontologies, and here we distinguish
them by the main task they aim to support.

Annotation and data integration

The use of standard identifiers for classes and relations in ontol-
ogies is a key component in enabling data integration across
multiple databases, because the same identifiers can be used
across multiple, disconnected databases, files or web sites.
Consequently, these identifiers are widely used in structured file
formats, in knowledge bases and data repositories. In fact, one of
the first applications for which biological ontologies were de-
veloped, notably the GO [1], was to make biological sense of the
large data sets emerging from the new expression array technol-
ogies in the early 2000s. Differential expression screens and
Serial Analyis of Gene Expression (SAGE) analyses generated data
sets of often thousands of genes, which needed to be interpreted
in terms of gene function. This provided the impetus behind the
ongoing functional and structural annotation of gene products,
which is now available through the GO database [38] and is a
mainstay of modern bioinformatics. In particular, ontologies
enabled the assignation of functions to gene products and the
ability to compare these functions computationally within and
across species; these features have become key tools in func-
tional and comparative genomics.

At its core, an ontology-based annotation associates an en-
tity and an ontology class, and combines this assertion with
metadata that contains, among others, information about who
created the annotation, the date at which the annotation was
created or the evidence that was considered. The entity that is
annotated can be represented by an identifier in a database,
referred to by a word or phrase in text, or even visually repre-
sented in an image [39, 40]. Annotation tools are concerned
with recording the annotation in standard formats, performing
basic quality checks and providing the metadata for the annota-
tions, as well as suggesting or inferring ontology-based annota-
tions using custom algorithms. For example, when the
annotations refer to entities mentioned in text, annotation tools
may use natural language processing techniques, such as
named entity recognition and relation extraction, and when an-
notations refer to entities represented in images, image pro-
cessing techniques may be applied.

The majority of annotation tools allow for the inclusion of
provenance information, such as the evidence for an ontology-
based annotation as recorded using the Evidence Code Ontology

[41] or the Provenance Ontology [42]. Tools such as Domeo [43],
an annotation framework applied among others by the
Neuroscience Information Framework and the OpenPhacts pro-
jects, uses the Annotation Ontology [39] to formally capture
provenance information associated with ontology-based anno-
tations. Furthermore, an increasing number of annotation tools
use the W3C Open Annotation Data Model [44], or are able to
import and export annotations in this format.

Annotation tools that support curators through markup of
literature are widely used to suggest possible annotations [45].
For example, the Textpresso software tool [46] was one of the
first tools developed to support literature curation for GO, and is
still extensively used in model organism databases [47]. Some
annotation tools come with additional functionality to allow
interactions between curators of data sets and ontology devel-
opers. For example, the Phenex tool was designed to support
the phenotype annotation of character matrices in the
Phenoscape project [48]. Phenex contains workflow elements
and inbuilt reliability algorithms that aim to reduce curator
workload [49]. Furthermore, Phenex also allows feedback to
ontology developers to request new ontology classes that are
needed to capture data accurately. While Phenex is primarily an
annotation tool relying on input from literature and experts,
other tools can incorporate domain-specific algorithms to aid in
the annotation process. For example, the GO consortium [38]
applies the Phylogenetic Annotation and Inference Tool, which
assists curators to infer annotations among members of a pro-
tein family based on sequence orthology [50], making GO an
interesting example of the confluence of the use of manual as-
signment based on published evidence, and electronic inference
(by orthology or structural motif) to fill the gaps in our know-
ledge concerning gene product function and location.

Data integration and annotation go hand-in-hand, and in par-
ticular for complex multimodal data sets, annotation with single
ontologies is often not sufficient. A particularly complex use-case
of annotation with multiple ontologies occurs in the domain of
phenotype descriptions, as applied in large-scale mutagenesis
projects. For example, in the Zebrafish Mutagenesis Project [51],
much of the observed data is categorical and describes anatom-
ical and physiological variation, and the phenotypic descriptions
are based on anatomy and process ontologies [51]. The
International Mouse Phenotyping Consortium (IMPC) [52], on the
other hand, generates both categorical data, which are assigned
by investigators directly based on a phenotype ontology, and
quantitative data. The strategy adopted by the IMPC is to express
phenodeviance by assigning a class from a phenotype ontology
on the basis of predetermined statistical thresholds [53, 54]. This
form of automated annotation, albeit on highly quality-con-
trolled data, is time-efficient and facilitates data integration and
mining across qualitative and quantitative information.

When it becomes necessary to use more than a single ontol-
ogy for annotation, it is beneficial to fix the ontologies that
are being used to annotate a data set. Ontology repositories
(Table 3) can aid in finding ontologies suitable for annotating
data within a domain.

Ontologies as vocabularies

Ontologies provide vocabularies of the terms used within a do-
main. Therefore, they can be used by a large variety of applica-
tions that rely on domain-specific terms. Example applications
for the vocabulary component of ontologies include user inter-
faces for databases that contain ontology-based annotations,
and natural language processing methods.
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Tools using the vocabularies associated with ontologies use
them in two main ways. First, the labels of an ontology classes
and relations enable access to data or text annotated with these
ontologies. For this type of application, a link is established be-
tween a class and a user-readable name of that class. This link
is then used to provide a way for human users of an ontology to
access the information associated with the ontology class.
Tools that use this feature include a wide range of browsers
that enable access to ontology-based annotations through the
class labels, such as the Amigo tool [55], which enables access
to GO annotations, or GOPubMed [56], which enables access to
scientific articles based on ontology classifications.

Second, the labels in an ontology can be used to identify
whether the text mentions a phenomenon characterized by a
class or relation in an ontology. Applications of this type typically
require the utilization of natural language processing techniques
[57]. One example of such application is the NCBO Annotator, a
tool that can recognize the labels and synonyms of ontology
classes in natural language texts [58]. The National Center for
Biomedical Ontologies (NCBO) Annotator implements a basic
concept recognition approach [59] that generalized well across
multiple vocabularies and does not require additional training.
However, more specialized approaches have been developed, in
particular in the context of recognizing descriptions of gene func-
tions and biological processes in text [60], which can then be
used to develop software tools that assist domain experts in lit-
erature-based database curation.

The labels of classes in ontologies can also be used for large-
scale text mining to identify system-wide associations between
the phenomena to which they refer. Text mining based on ontol-
ogies has been used to identify the presence of disease modules
based on phenotypes [61, 62], drug targets and drug indications
[63, 74], drug–drug interaction [65] and candidate genes for dis-
eases [66, 67]. The success of these methods depends on the
coverage of terms used to refer to classes in the ontology.

The main challenge in relying on class labels to recognize
the reference to an ontology class in text is that labels do not
capture all of the possible linguistic variations around terms
and phrases used to refer to an ontology class [68]. Recognizing
ontology classes referenced in text poses a distinct set of

challenges, in particular for semantically complex classes, or
classes for which no common and widely used terms have been
established [69–71].

Formalized definitions and axioms: reasoning with
ontologies

Several tools and software libraries can make use of ontologies’
axioms and formal definitions. The primary means to access
and process ontologies semantically are automated reasoners,
i.e. software tools that can directly infer knowledge from the
axioms and definitions in ontologies using deductive inference.
Automated reasoners can detect contradictions in the axioms
and definitions of an ontology (consistency checking), infer the
most specific subclasses and superclasses for all classes in an
ontology (classification) and answer complex queries. A wide
range of automated reasoners has been developed for different
subsets of OWL, supporting different features and exhibiting
different computational complexity for basic reasoning tasks
such as answering queries (Table 4). Reasoners for subsets of
OWL such as OWL-EL support less expressivity for axioms and
queries in ontologies, but usually guarantee a lower computa-
tional complexity. For complex ontologies expressed in OWL,
examples of commonly used reasoners include Pellet [72] owing
to its support for a large number of features, and HermiT [73]
owing to its high performance for complex ontologies. For
ontologies expressed in the OWL-EL profile, the ELK reasoner
[74] is widely used owing to its support for large ontologies and
parallel reasoning. Recent developments include the Konklude
reasoner [75], which outperforms most OWL-EL and OWL 2 rea-
soners even for large ontologies [76]. As reasoner technology is
evolving rapidly, new optimization methods can lead to signifi-
cant performance improvements. If a selected reasoner cannot
perform a reasoning task over an ontology, it can pay off to re-
view reasoner competitions such as the annual OWL Reasoner
Evaluation workshops [76] to find another reasoner that is more
adequate for an ontology and desired application. Alternatively,
ontology modularization approaches [23, 77–79] can be applied
to extract subsets of ontologies, which automated reasoners
can process efficiently.

Table 3. Overview of main ontology repositories in the life science domain

Repository Key features URL

BioPortal BioPortal [126] is the largest ontology repository for ontologies in biology and
biomedicine. It contains >400 ontologies with a total of >6 million classes.
BioPortal can be used to find ontologies based on the ontology name or the
label of a class within the ontology. It further has a large number of web
services and widgets that allow embedding of key BioPortal functions in
web applications. The NCBO Annotator [127] is a part of BioPortal and can
be used to find labels of ontology classes in text. BioPortal can also be
accessed through a SPARQL endpoint.

http://bioportal.bioontology.org/

OntoBee Ontobee [128] is an ontology repository in which ontologies are presented as
Linked Data. Ontobee provides information about the classes and relations
used by the OBO project.

http://www.ontobee.org/

Ontology Lookup
Service

The Ontology Lookup Service [129] consists of a repository of ontologies
represented in the OBO Flatfile Format, and enables search of single
ontologies, lookup of terms across multiple ontologies and browsing and
visualizing the ontology graph structures. The Ontology Lookup Service
can be accessed through a web interface and a number of web services.

http://www.ebi.ac.uk/ontology-lookup/

OBO Library The Open Biological and Biomedical Ontologies (OBO) library [2] consists of a
number of ontologies that have been developed according to a set of agreed
principles including complementarity and collaborative development.

http://obofoundry.org
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OWL reasoners are either implemented as stand-alone tools,
or can be accessed through the OWL API [80] or the OWLLink
protocol [81]. The OWL API is a reference implementation for
creating and manipulating OWL ontologies and provides inter-
faces for automated reasoning that the majority of OWL rea-
soners implement. OWLLink is an HTTP-based protocol for
communicating with OWL reasoners. Reasoners can also be ac-
cessed through ontology editors such as Protege [82]. Table 5
provides an overview of some common tools and software libra-
ries used to process ontologies and interact with reasoners, and
Table 6 shows some common analysis and visualization tools
and libraries that use ontologies.

Most users of ontologies will not access ontologies directly
through automated reasoners, but will either use the output of
an automated reasoner (e.g. the inferred graph structure of an
ontology) or interact with a reasoner indirectly (e.g. through a
software tool that uses an automated reasoner as part of its
operation). Nevertheless, in some approaches, automated rea-
soning has been applied directly to verify data consistency with
respect to constraints in an ontology or reveal novel biological
knowledge based on axioms in an ontology. The axioms in an
ontology can be used to verify whether an entity described in a
database is able to satisfy the conditions laid out for that kind of
entity, and automated reasoning can be used to detect conflicts.
For example, such an approach has been applied retrospectively
to computational models in systems biology [83], but is increas-
ingly being applied to ontology-based annotations at the time
the annotation is made [84, 85]. Some data exchange standards
are now being designed with data verification in mind, and a
prime example is the BioPAX standard for pathway data shar-
ing, which is based on formalized knowledge in OWL [86]. The
axioms in an ontology can also be used to infer the class to
which an entity belongs based on the features and descriptions
of the class and the entity. An application of this is the infer-
ence of the protein family to which a protein belongs based on
an ontology and automated reasoning [87].

More subtly, reasoning over ontologies can also be applied for
integrating ontology-annotated data sets across different domain
by systematically combining different ontologies using axioms or
axiom patterns [88, 89]. In such applications, the relationship be-
tween classes in different ontologies is identified and expressed
in the form of an axiom or axiom pattern that is systematically
applied to several pairs of classes. Prime examples of this form of
integration are species-specific anatomy and phenotype ontolo-
gies [90, 91]. Integrating data annotated with these ontologies
relies on identifying homologous anatomical structures [92] and
relating the classes that refer to these structures in different
anatomy ontologies using axiom patterns [90, 93].

Mining and analyzing multimodal data with ontologies

The great potential in using ontologies for data analysis lies
with the possibility of combining their different functional lev-
els, and some exciting insights into the biological properties of
whole systems have been achieved by combining data through
ontologies. For example, one of the most widely used applica-
tions for ontologies is Gene Set Enrichment Analysis [94] or simi-
lar enrichment methods, which combine the graph structure of
ontologies (axioms and definitions) with their potential for data
integration (through ontology-based annotations) to provide a
statistical interpretation of differences between two states with
regard to the background knowledge provided by the ontology
over which the enrichment analysis was performed. Another
analysis method specifically relying on ontologies and their

annotations is the use of similarity measures to determine the
‘semantic’ distance and proximity between data items [95]. In
semantic similarity measures, the axioms and definitions of
ontologies are exploited to define a similarity between anno-
tated data items. Semantic similarity has widely been applied to
computationally predict protein–protein interactions based on
their functional similarity [96, 97], to the diagnosis of disease
based on phenotypic similarity [98–100], or to the classification
of chemicals based on structural similarity [101].

While statistical analysis of graphs or sets, or measures of se-
mantic similarity, are well established methods that use ontolo-
gies for data mining, many machine learning and data mining
algorithms that are applied to unstructured data are not yet
widely used with ontologies and ontology-structured data. The
challenges of using these methods occur both when using ontol-
ogies and ontology-annotated data as the target of a machine
learning and data mining algorithm as well as when using ontol-
ogies and ontology-annotated data as features. When using
ontologies as the target, i.e. when aiming to learn an ontology-
based classification for some piece of data such as the functions
of a protein, several challenges arise in relation to the adoption
of these traditional algorithms to ontology-based data in the bio-
logical and biomedical domains. These challenges primarily re-
late to the ‘multi-class’ nature of the problem, as ontologies have
often very large numbers of classes, the ‘structured dependency
relations’ between these classes (i.e. the axioms in the ontology)
and, in many cases, the ‘multi-label’ nature of the classification
problem as data items are usually annotated to more than one
ontology class. When using ontologies, or ontology-annotated
data, as features in a machine learning task, challenges relate to
the large number of classes that are often sparsely populated
(more specific classes are usually present less frequently while
more general classes are used more frequently), and again the
dependency relations between classes (e.g. disjointness, subclass
relations and axiom patterns that exist between classes).

Despite these challenges, progress is being made in incorpo-
rating ontologies and ontology-annotated data into machine
learning and data mining algorithms. For example, in the area
of prediction of protein functions, driven by the Critical
Assessment of Function Annotation challenge [102], several
approaches have been developed to predict GO annotations of
proteins [103–106], some of which use ontologies as features as
well [104, 107]. While these methods have been developed in
the context of protein function prediction, parts of these can be
transferred to other problems.

The use of ontologies can also help address a challenge that
machine learning and data mining approaches face: the incorp-
oration of different types of features for multimodal learning
and classification [108]. Combining information from text,
images, videos, molecular data or structured data in knowledge
bases to improve classification can be facilitated through the
use ontologies, by first extracting relevant features from each
type of information and representing the results using a single
ontology that combines the information used for training a
classifier.

Perspective

There are now sufficient stable ontologies to permit routine re-
use of classes from multiple ontologies in automated or
semiautomated ontology construction algorithms [109]. With
increasing size and number of ontologies, the ability to
modularize ontologies to generate application-specific ‘views’
while maintaining interoperability with data sets in a domain
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that are annotated with another module of the same ontology
will become essential. A recent example of this is provided by the
Bioassay ontology [110] or the automated generation of pheno-
type ontologies [111, 112]. To support these applications, cover-
age and quality of content in established ontologies must be
further improved [113], a task that poses a serious challenge and
requires the sustained engagement of domain experts.

One major application of exploiting multiple ontologies is to
formalize the large, unstructured, multimodal and often distrib-
uted data from clinical records. It is now possible to capture in-
formation and knowledge related to diagnostic procedures,
drugs, phenotypes, diseases and genotypes using existing
ontologies, and there are efforts to create ontologies for captur-
ing other environmental and behavioral data for patients. Such
ontologies are now being applied in a clinical setting [114], but
mainly for data mining from partially structured and legacy
clinical records [115]. Incorporating ontologies directly in the
electronic health record will lead to novel methods for patient
classification and stratification, and the analysis and mining of
large-scale patient data. With increasing numbers of whole
exome and genome sequences in clinics, there is marked poten-
tial for using ontology-based enrichment algorithms or incorpo-
rating results from basic biological research into clinical
decision making [116]. We expect to see further rapid develop-
ments in this important area.

From an algorithmic and methodological point of view, the
next challenge we face is the development of new methods for

applying ontologies in data mining and data analysis. These
methods must be able to use the different features ontologies
provide, combine them in meaningful ways and be applicable to
large, complex and multimodal data sets. We also expect to see
more complex ontology-based applications that combine the
main features of ontologies in novel ways. For example, annota-
tion tools will be developed that do not merely use the labels
and class identifiers to associate entities with ontology classes,
but use the ontology’s axioms and formal definitions to prese-
lect possible annotations (e.g. by eliminating possible process
classes at places at which only annotations to material objects
would be sensible), verify the consistency of an annotation [83],
reveal the consequences of asserted information to users [87]
and be applicable to multiple types of data (e.g. structured data,
text and images).

Finally, to further improve ontology-based data integration
and analysis, robust evaluation criteria need to be developed
that are based on how ontologies are actually being used in
research applications [117]. Recently, some exciting results have
demonstrated that the GO accurately resembles modules found
in experimentally derived gene and protein interaction net-
works, leading to a data-driven way for validating an ontology
[118]. The increasing use of ontologies in scientific research will
lead to improved methods for evaluating ontology quality based
on their performance in scientific applications [117, 119]. A
tighter integration between experimental results and the do-
main knowledge formalized in ontologies will not only lead to

Table 4. A selection of automated reasoners for OWL ontologies

Reasoner OWL support Description

Pellet [72] OWL 2, OWL EL General purpose OWL reasoner with a large set of features, including specialized OWL EL rea-
soning, support for rules, support of epistemic operators, integration in SPARQL, explanation
of inferences, incremental reasoning.

HermiT [73] OWL 2, OWL EL General purpose, highly optimized OWL reasoner.
FacTþþ [130] OWL-DL, OWL 2 (partially) Highly optimized reasoner implemented in Cþþ.
Konklude [75] OWL 2 Highly optimized OWL reasoner supporting parallel reasoning.
RacerPro 2.0 [131] OWL 2 (partial) Optimized OWL reasoner, with integration in the AllegroGraph [132] triple store.
TrOWL [133] OWL 2 Scalable OWL reasoner with support for limited closed-world reasoning (negation as failure)

and stream reasoning.
ELK [74] OWL-EL Optimized and feature-rich OWL EL reasoner with support for incremental and parallel

reasoning.

Table 5. An overview over tools and software libraries for processing and interacting with ontologies

Tool Description Web site

Protege,
WebProtege

Protege [82] is an OWL ontology editor with full support for OWL ontologies and a
large number of plug-ins that provide integration of reasoners, export and
import of various ontology representation formats, or ontology visualization.
WebProtege is a web-based collaborative ontology editor, which provides
similar functionality to Protege through a web interface.

http://protege.stanford.edu/,
http://webprotege.stanford.edu/

OWL API The OWL API [80] is a reference implementation and a de facto standard for
processing OWL ontologies.

http://owlapi.sourceforge.net/

Owlcpp owlcpp [134] is a Cþþ library for processing OWL ontologies. It includes support
for querying ontologies through automated reasoners.

http://owl-cpp.sourceforge.net/

Brain Brain [135] is a library based on the OWL API that provides convenience methods
for processing and reasoning with ontologies, in particular biological and
biomedical ontologies represented in the OWL-EL profile of OWL.

https://github.com/loopasam/Brain

Redland RDF API An RDF library written in C. It provides a large set of commonly used command
line tools to transform or collect basic statistics about an RDF file.

http://librdf.org/

Apache Jena Jena is a Java library and collection of tools consisting of an RDF library,
integration of SPARQL queries and support for OWL ontologies.

https://jena.apache.org/
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improved evaluation criteria and subsequently better ontolo-
gies, but is also a crucial step in making sense of large struc-
tured and unstructured data sets in biology and biomedicine.

Key Points

• Ontologies provide identifiers for classes and relations
that represent phenomena within a domain, thereby
enabling integration of data.

• Ontologies provide labels for classes and relations,
thereby providing a domain vocabulary.

• Ontologies provide metadata associated with classes
and relations that allows human users to understand
their meaning and contribute to consistent use in an-
notation and other applications.

• Ontologies provide axioms and formal definitions that
enable computational access to some aspects of the
meaning of classes and relations.

• Combining the four main features of ontologies facili-
tates semantic integration of heterogeneous, multi-
modal data within and across domains, and enables
novel data mining methods that span traditional
boundaries between domains and data types.
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