1,760 research outputs found

    Beyond deficit-based models of learners' cognition: Interpreting engineering students' difficulties with sense-making in terms of fine-grained epistemological and conceptual dynamics

    Full text link
    Researchers have argued against deficit-based explanations of students' troubles with mathematical sense-making, pointing instead to factors such as epistemology: students' beliefs about knowledge and learning can hinder them from activating and integrating productive knowledge they have. In this case study of an engineering major solving problems (about content from his introductory physics course) during a clinical interview, we show that "Jim" has all the mathematical and conceptual knowledge he would need to solve a hydrostatic pressure problem that we posed to him. But he reaches and sticks with an incorrect answer that violates common sense. We argue that his lack of mathematical sense-making-specifically, translating and reconciling between mathematical and everyday/common-sense reasoning-stems in part from his epistemological views, i.e., his views about the nature of knowledge and learning. He regards mathematical equations as much more trustworthy than everyday reasoning, and he does not view mathematical equations as expressing meaning that tractably connects to common sense. For these reasons, he does not view reconciling between common sense and mathematical formalism as either necessary or plausible to accomplish. We, however, avoid a potential "deficit trap"-substituting an epistemological deficit for a concepts/skills deficit-by incorporating multiple, context-dependent epistemological stances into Jim's cognitive dynamics. We argue that Jim's epistemological stance contains productive seeds that instructors could build upon to support Jim's mathematical sense-making: He does see common-sense as connected to formalism (though not always tractably so) and in some circumstances this connection is both salient and valued.Comment: Submitted to the Journal of Engineering Educatio

    Late onset of Huntington's disease

    Full text link
    Twenty-five patients with late-onset Huntington's disease were studied; motor impairment appeared at age 50 years or later. The average age at onset of chorea was 57.5 years, with an average age at diagnosis of 63.1 years. Approximately 25% of persons affected by Huntington's disease exhibit late onset. A preponderance of maternal transmission was noted in late-onset Huntington's disease. The clinical features resembled those of mid-life onset Huntington's disease but progressed more slowly. Neuropathological evaluation of two cases reveal less severe neuronal atrophy than for mid-life onset disease

    Effects of a 12-week suspension versus traditional resistance training program on body composition, bioimpedance vector patterns, and handgrip strength in older men: A randomized controlled trial

    Get PDF
    This investigation aimed to compare the effects of suspension training versus traditional resistance exercise using a combination of bands and bodyweight on body composition, bioimpedance vector patterns, and handgrip strength in older men. Thirty-six older men (age 67.4 ± 5.1 years, BMI 27.1 ± 3.3 kg/m2) were randomly allocated into suspension training (n = 12), traditional training (n = 13), or non-exercise (n = 11) groups over a 12-week study period. Body composition was assessed using conventional bioelectrical impedance analysis and classic and specific bioelectric impedance vector analysis, and handgrip strength was measured with a dynamometer. Results showed a significant (p < 0.05) group by time interaction for fat mass, fat-free mass, total body water, skeletal muscle index, classic and specific bioelectrical resistance, classic bioelectrical reactance, phase angle, and dominant handgrip strength. Classic and specific vector displacements from baseline to post 12 weeks for the three groups were observed. Handgrip strength increased in the suspension training group (p < 0.01, ES: 1.50), remained stable in the traditional training group, and decreased in the control group (p < 0.01, ES: −0.86). Although bodyweight and elastic band training helps to prevent a decline in muscle mass and handgrip strength, suspension training proved more effective in counteracting the effects of aging in older men under the specific conditions studied

    Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds

    Full text link
    Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy (NV) color centers. Despite the motion and random orientation of NV centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable d.c. magnetometry in solution. We estimate the d.c. magnetic field sensitivity based on variations in ESR line shapes to be ~50 microTesla/Hz^1/2. This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques.Comment: 29 pages, 13 figures for manuscript and supporting informatio

    Analysis of the 3d6 4s(6D)4f-5g Supermultiplet of Fe I in Laboratory and Solar Infrared Spectra

    Full text link
    The combined laboratory and solar analysis of the highly-excited subconfigurations 4f and 5g of Fe I has allowed us to classify 87 lines of the 4f-5g supermultiplet in the spectral region 2545-2585 cm-1. The level structure of these JK-coupled configurations is predicted by semiempirical calculations and the quadrupolic approximation. Semiempirical gf-values have been calculated and are compared to gf values derived from the solar spectrum. The solar analysis has shown that these lines, which should be much less sensitive than lower excitation lines to departures from LTE and to temperature uncertainties, lead to a solar abundance of iron which is consistent with the meteoritic value (A_Fe = 7.51).Comment: ApJ (in press). 14 pages. LaTeX AAS macros. 6 figures on request from [email protected]. LUND-GN-94-

    Testing of Liquid Metal Components for Nuclear Surface Power Systems

    Get PDF
    The capability to perform testing at both the module/component level and in near prototypic reactor configurations using a non-nuclear test methodology allowed for evaluation of two components critical to the development of a potential nuclear fission power system for the lunar surface. A pair of 1 kW Stirling power convertors, similar to the type that would be used in a reactor system to convert heat to electricity, were integrated into a reactor simulator system to determine their performance using pumped NaK as the hot side working fluid. The performance in the pumped-NaK system met or exceed the baseline performance measurements where the converters were electrically heated. At the maximum hot-side temperature of 550 C the maximum output power was 2375 watts. A specially-designed test apparatus was fabricated and used to quantify the performance of an annular linear induction pump that is similar to the type that could be used to circulate liquid metal through the core of a space reactor system. The errors on the measurements were generally much smaller than the magnitude of the measurements, permitting accurate performance evaluation over a wide range of operating conditions. The pump produced flow rates spanning roughly 0.16 to 5.7 l/s (2.5 to 90 GPM), and delta p levels from less than 1 kPa to 90 kPa (greater than 0.145 psi to roughly 13 psi). At the nominal FSP system operating temperature of 525 C the maximum efficiency was just over 4%

    Pharmacological And Genetic Reversal Of Age-Dependent Cognitive Deficits Attributable To Decreased Presenilin Function

    Get PDF
    Alzheimer\u27s disease (AD) is the leading cause of cognitive loss and neurodegeneration in the developed world. Although its genetic and environmental causes are not generally known, familial forms of the disease (FAD) are attributable to mutations in a single copy of the Presenilin (PS) and amyloid precursor protein genes. The dominant inheritance pattern of FAD indicates that it may be attributable to gain or change of function mutations. Studies of FAD-linked forms of presenilin (psn) in model organisms, however, indicate that they are loss of function, leading to the possibility that a reduction in PS activity might contribute to FAD and that proper psn levels are important for maintaining normal cognition throughout life. To explore this issue further, we have tested the effect of reducing psn activity during aging in Drosophila melanogaster males. We have found that flies in which the dosage of psn function is reduced by 50% display age-onset impairments in learning and memory. Treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium during the aging process prevented the onset of these deficits, and treatment of aged flies reversed the age-dependent deficits. Genetic reduction of Drosophila metabotropic glutamate receptor (DmGluRA), the inositol trisphosphate receptor (InsP(3)R), or inositol polyphosphate 1-phosphatase also prevented these age-onset cognitive deficits. These findings suggest that reduced psn activity may contribute to the age-onset cognitive loss observed with FAD. They also indicate that enhanced mGluR signaling and calcium release regulated by InsP(3)R as underlying causes of the age-dependent cognitive phenotypes observed when psn activity is reduced

    A Path Algorithm for Constrained Estimation

    Full text link
    Many least squares problems involve affine equality and inequality constraints. Although there are variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current paper proposes a new path following algorithm for quadratic programming based on exact penalization. Similar penalties arise in l1l_1 regularization in model selection. Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞\infty, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the lasso and generalized lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well chosen examples illustrate the mechanics and potential of path following.Comment: 26 pages, 5 figure

    Hybrid CdZnO/GaN quantum-well light emitting diodes

    Get PDF
    We report on the demonstration of light emission from hybrid CdZnO quantum-well light emitting diodes. A one-dimensional drift-diffusion method was used to model the expected band structure and carrier injection in the device, demonstrating the potential for 90% internal quantum efficiency when a CdZnO quantum well is used. Fabricated devices produced visible electroluminescence that was found to redshift from 3.32 to 3.15 eV as the forward current was increased from 20 to 40 mA. A further increase in the forward current to 50 mA resulted in a saturation of the redshift
    • …
    corecore