1,327 research outputs found
Analysis of the Factors that Correlate with Transition Outcomes of Commercial Technology Prototype Projects
A key metric of success for Department of Defense (DoD) Research and Development organizations is the ability to transition technologies and prototypes. Office of the Undersecretary of Defense for Research and Engineering\u27s prototyping guide shows successful transition pathways come in the forms of transition to operational use, rapid fielding, existing program adoption, or a new acquisition program (2018). There are many factors that occur throughout a prototype projects lifecycle that impact the likelihood of transition. These factors include both qualitative and quantitative factors. Limited research has been performed, past the best practice considerations, of what factors impact transition of prototyping efforts. This research evaluates commercial technology prototyping projects to identify the project characteristics and factors that correlate with transition success. The research setting is DoDs commercial product prototyping organization, the Defense Innovation Unit. The findings show that beyond technology success, the resources of time and money, stakeholder commitment and consistency, project execution and transition market factors correlate with transition success
Self-trapped electrons and holes in PbBr crystals
We have directly observed self-trapped electrons and holes in PbBr
crystals with electron-spin-resonance (ESR) technique. The self-trapped states
are induced below 8 K by two-photon interband excitation with pulsed
120-fs-width laser light at 3.10 eV. Spin-Hamiltonian analyses of the ESR
signals have revealed that the self-trapping electron centers are the dimer
molecules of Pb along the crystallographic a axis and the
self-trapping hole centers are those of Br with two possible
configurations in the unit cell of the crystal. Thermal stability of the
self-trapped electrons and holes suggests that both of them are related to the
blue-green luminescence band at 2.55 eV coming from recombination of spatially
separated electron-hole pairs.Comment: 8 pages (7 figures, 2 tables), ReVTEX; revised the text and figures
1, 4, and
Italian adaptation of the MOQ-T as a fast screening instrument based on teachers' ratings for identifying developmental coordination disorder symptoms
The present study was designed to collect data on the Italian adaptation of the Motor Observation Questionnaire for Teachers (MOQ-T, Schoemaker, Flapper, Reinders-Messelink, & De Kloet, 2008). We provide data for 2nd, 3rd, 4th and 5th grades, in some cases distinguishing males from females. On the basis of the present and previous evidence (GiofrĂš et al., 2014) the MOQ-T appears a valid and a fast screening instrument for detecting developmental coordination disorders (DCD) symptoms (on the basis of teachers' ratings) in children and can be very important as a first step in the process for diagnosing DCD
A direct method for measuring discounting and QALYs more easily and reliably
Time discounting and quality of life are two important factors in evaluations of medical interventions. The measurement of these two factors is complicated because they interact. Existing methods either simply assume one factor given, based on heuristic assumptions, or invoke complicating extraneous factors, such as risk, that generate extra biases. The authors introduce a method for measuring discounting (and then quality of life) that involves no extraneous factors and that avoids distorting interactions. Their method is considerably simpler and more realistic for subjec
Cigarette smoking and risk of acoustic neuromas and pituitary tumours in the Million Women Study
BACKGROUND: The relationship between cigarette smoking and incidence of acoustic neuromas and pituitary tumours is uncertain. METHODS: We examined the relation between smoking and risk of acoustic neuromas and pituitary tumours in a prospective study of 1.2 million middle-aged women in the United Kingdom. RESULTS: Over 10.2 million person years of follow-up, 177 women were diagnosed with acoustic neuromas and 174 with pituitary tumours. Current smokers at recruitment were at significantly reduced risk of incident acoustic neuroma compared with never smokers (adjusted relative risk (RR)=0.41, 95% confidence interval (CI)=0.24-0.70, P=0.001). Past smokers did not have significantly different risk of acoustic neuroma than never smokers (RR=0.87, 95% CI=0.62-1.22, P=0.4). Smoking was not associated with incidence of pituitary tumours (RR in current vs never smokers=0.91, 95% CI=0.60-1.40, P=0.7). CONCLUSION: Women who smoke are at a significantly reduced risk of acoustic neuromas, but not of pituitary tumours, compared with never smokers. Acoustic neuromas are much rarer than the cancers that are increased among smokers
Geophysical studies with laser-beam detectors of gravitational waves
The existing high technology laser-beam detectors of gravitational waves may
find very useful applications in an unexpected area - geophysics. To make
possible the detection of weak gravitational waves in the region of high
frequencies of astrophysical interest, ~ 30 - 10^3 Hz, control systems of laser
interferometers must permanently monitor, record and compensate much larger
external interventions that take place in the region of low frequencies of
geophysical interest, ~ 10^{-5} - 3 X 10^{-3} Hz. Such phenomena as tidal
perturbations of land and gravity, normal mode oscillations of Earth,
oscillations of the inner core of Earth, etc. will inevitably affect the
performance of the interferometers and, therefore, the information about them
will be stored in the data of control systems. We specifically identify the
low-frequency information contained in distances between the interferometer
mirrors (deformation of Earth) and angles between the mirrors' suspensions
(deviations of local gravity vectors and plumb lines). We show that the access
to the angular information may require some modest amendments to the optical
scheme of the interferometers, and we suggest the ways of doing that. The
detailed evaluation of environmental and instrumental noises indicates that
they will not prevent, even if only marginally, the detection of interesting
geophysical phenomena. Gravitational-wave instruments seem to be capable of
reaching, as a by-product of their continuous operation, very ambitious
geophysical goals, such as observation of the Earth's inner core oscillations.Comment: 29 pages including 8 figures, modifications and clarifications in
response to referees' comments, to be published in Class. Quant. Gra
Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a polymeric derivative of camptothecin (CPT)
Polymeric cytotoxic conjugates are being developed with the aim of preferential delivery of the anticancer agent to tumour. MAG-CPT comprises the topoisomerase I inhibitor camptothecin linked to a water-soluble polymeric backbone methacryloylglycynamide ( average molecular weight 18 kDa, 10% CPT by weight). It was administered as a 30-min infusion once every 4 weeks to patients with advanced solid malignancies. The objectives of our study were to determine the maximum tolerated dose, dose-limiting toxicities, and the plasma and urine pharmacokinetics of MAG-CPT, and to document responses to this treatment. The starting dose was 30 mgm(-2) (dose expressed as mg equivalent camptothecin). In total, 23 patients received 47 courses at six dose levels, with a maximum dose of 240 mgm(-2). Dose-limiting toxicities were myelosuppression, neutropaenic sepsis, and diarrhoea. One patient died after cycle 1 MAG-CPT at the maximum dose. The maximum tolerated dose and dose recommended for further clinical study was 200 mgm(-2). The half-lives of both MAG-CPT and released CPT were prolonged (46 days) and measurable levels of MAG-CPT were retrieved from plasma and urine 4 weeks after treatment. However, subsequent pharmacodynamic studies of this agent have led to its withdrawal from clinical development
Modelling charge self-trapping in wide-gap dielectrics: Localization problem in local density functionals
We discuss the adiabatic self-trapping of small polarons within the density
functional theory (DFT). In particular, we carried out plane-wave
pseudo-potential calculations of the triplet exciton in NaCl and found no
energy minimum corresponding to the self-trapped exciton (STE) contrary to the
experimental evidence and previous calculations. To explore the origin of this
problem we modelled the self-trapped hole in NaCl using hybrid density
functionals and an embedded cluster method. Calculations show that the
stability of the self-trapped state of the hole drastically depends on the
amount of the exact exchange in the density functional: at less than 30% of the
Hartree-Fock exchange, only delocalized hole is stable, at 50% - both
delocalized and self-trapped states are stable, while further increase of exact
exchange results in only the self-trapped state being stable. We argue that the
main contributions to the self-trapping energy such as the kinetic energy of
the localizing charge, the chemical bond formation of the di-halogen quasi
molecule, and the lattice polarization, are represented incorrectly within the
Kohn-Sham (KS) based approaches.Comment: 6 figures, 1 tabl
- âŠ