775 research outputs found
Transport signature of pseudo-Jahn-Teller dynamics in a single-molecule transistor
We calculate the electronic transport through a molecular dimer, in which an
excess electron is delocalized over equivalent monomers, which can be locally
distorted. In this system the Born-Oppenheimer approximation breaks down
resulting in quantum entanglement of the mechanical and electronic motion. We
show that pseudo Jahn-Teller (pJT) dynamics of the molecule gives rise to
conductance peaks that indicate this violation. Their magnitude, sign and
position sharply depend on the electro-mechanical properties of the molecule,
which can be varied in recently developed three-terminal junctions with
mechanical control. The predicted effect depends crucially on the degree of
intramolecular delocalization of the excess electron, a parameter which is also
of fundamental importance in physical chemistry.Comment: 6 pages, 3 figure
Methods for suspensions of passive and active filaments
Flexible filaments and fibres are essential components of important complex
fluids that appear in many biological and industrial settings. Direct
simulations of these systems that capture the motion and deformation of many
immersed filaments in suspension remain a formidable computational challenge
due to the complex, coupled fluid--structure interactions of all filaments, the
numerical stiffness associated with filament bending, and the various
constraints that must be maintained as the filaments deform. In this paper, we
address these challenges by describing filament kinematics using quaternions to
resolve both bending and twisting, applying implicit time-integration to
alleviate numerical stiffness, and using quasi-Newton methods to obtain
solutions to the resulting system of nonlinear equations. In particular, we
employ geometric time integration to ensure that the quaternions remain unit as
the filaments move. We also show that our framework can be used with a variety
of models and methods, including matrix-free fast methods, that resolve low
Reynolds number hydrodynamic interactions. We provide a series of tests and
example simulations to demonstrate the performance and possible applications of
our method. Finally, we provide a link to a MATLAB/Octave implementation of our
framework that can be used to learn more about our approach and as a tool for
filament simulation
The exceptional Herbig Ae star HD101412: The first detection of resolved magnetically split lines and the presence of chemical spots in a Herbig star
We obtained high-resolution, high signal-to-noise UVES and a few lower
quality HARPS spectra revealing the presence of resolved magnetically split
lines. HD101412 is the first Herbig Ae star for which the rotational Doppler
effect was found to be small in comparison to the magnetic splitting. The
measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean
quadratic field was found to vary in the range of 3.5 to 4.8kG. To determine
the period of variations, we used radial velocity, equivalent width, line
width, and line asymmetry measurements of variable spectral lines of several
elements, as well as magnetic field measurements. The most pronounced
variability was detected for spectral lines of He I and the iron peak elements,
whereas the spectral lines of CNO elements are only slightly variable. From
spectral variations and magnetic field measurements we derived a potential
rotation period P_rot=13.86d, which has to be proven in future studies with a
larger number of observations. It is the first time that the presence of
element spots is detected on the surface of a Herbig Ae/Be star. Our previous
study of Herbig Ae stars revealed a trend towards stronger magnetic fields for
younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to
a few other (non-statistical) studies claiming that magnetic Herbig Ae stars
are progenitors of the magnetic Ap stars. New developments in MHD theory show
that the measured magnetic field strengths are compatible with a current-driven
instability of toroidal fields generated by differential rotation in the
stellar interior. This explanation for magnetic intermediate-mass stars could
be an alternative to a frozen-in fossil field.Comment: 7 pages, 6 figures, 1 table, to appear in Astronomische Nachrichte
Scaling of the Kondo zero bias peak in a hole quantum dot at finite temperatures
We have measured the zero bias peak in differential conductance in a hole
quantum dot. We have scaled the experimental data with applied bias and
compared to real time renormalization group calculations of the differential
conductance as a function of source-drain bias in the limit of zero temperature
and at finite temperatures. The experimental data show deviations from the T=0
calculations at low bias, but are in very good agreement with the finite T
calculations. The Kondo temperature T_K extracted from the data using T=0
calculations, and from the peak width at 2/3 maximum, is significantly higher
than that obtained from finite T calculations.Comment: Accepted to Phys. Rev. B (Rapid
Real-Time-RG Analysis of the Dynamics of the Spin-Boson Model
Using a real-time renormalization group method we determine the complete
dynamics of the spin-boson model with ohmic dissipation for coupling strengths
. We calculate the relaxation and dephasing time, the
static susceptibility and correlation functions. Our results are consistent
with quantum Monte Carlo simulations and the Shiba relation. We present for the
first time reliable results for finite cutoff and finite bias in a regime where
perturbation theory in or in tunneling breaks down. Furthermore, an
unambigious comparism to results from the Kondo model is achieved.Comment: 4 pages, 5 figures, 1 tabl
Exact results for nonlinear ac-transport through a resonant level model
We obtain exact results for the transport through a resonant level model
(noninteracting Anderson impurity model) for rectangular voltage bias as a
function of time. We study both the transient behavior after switching on the
tunneling at time t = 0 and the ensuing steady state behavior. Explicit
expressions are obtained for the ac-current in the linear response regime and
beyond for large voltage bias. Among other effects, we observe current ringing
and PAT (photon assisted tunneling) oscillations.Comment: 7 page
Interference and interaction effects in multi-level quantum dots
Using renormalization group techniques, we study spectral and transport
properties of a spinless interacting quantum dot consisting of two levels
coupled to metallic reservoirs. For strong Coulomb repulsion and an applied
Aharonov-Bohm phase , we find a large direct tunnel splitting
between the levels of
the order of the level broadening . As a consequence we discover a
many-body resonance in the spectral density that can be measured via the
absorption power. Furthermore, for , we show that the system can be
tuned into an effective Anderson model with spin-dependent tunneling.Comment: 5 pages, 4 figures included, typos correcte
- …