6 research outputs found

    The Potential of Epigallocatechin-3-gallate (EGCG) as Complementary Medicine for the Treatment of Inflammatory Bowel Disease

    Get PDF
    Complementary and alternative medicine has the potential to enrich conventional therapy to improve the treatment of various diseases. Patients that suffer from inflammatory bowel disease, which requires a constant need for medication, have to deal with the adverse effects of repeated application. Natural products such as Epigallocatechin-3-gallate (EGCG) possess the potential to improve symptoms of inflammatory diseases. We investigated the efficacy of EGCG on an inflamed co-culture model simulating IBD and compared it to the efficacies of four commonly applied active pharmaceutical ingredients. EGCG (200 µg/mL) strongly stabilized the TEER value of the inflamed epithelial barrier to 165.7 ± 4.6% after 4 h. Moreover, the full barrier integrity was maintained even after 48 h. This corresponds to the immunosuppressant 6-Mercaptopurin and the biological drug Infliximab. The EGCG treatment significantly decreased the release of the pro-inflammatory cytokines IL-6 (to 0%) and IL-8 (to 14.2%), similar to the effect of the corticosteroid Prednisolone. Therefore, EGCG has a high potential to be deployed as complementary medicine in IBD. In future studies, the improvement of EGCG stability is a key factor in increasing the bioavailability in vivo and fully harnessing the health-improving effects of EGCG

    Inflammatory bowel disease addressed by Caco-2 and monocyte-derived macrophages : an opportunity for an in vitro drug screening assay

    Get PDF
    Infammatory bowel disease (IBD) is a widespread disease, afecting a growing demographic. The treatment of chronic infammation located in the GI-tract is dependent on the severity; therefore, the IBD treatment pyramid is commonly applied. Animal experimentation plays a key role for novel IBD drug development; nevertheless, it is ethically questionable and limited in its throughput. Reliable and valid in vitro assays ofer the opportunity to overcome these limitations. We combined Caco-2 with monocyte-derived macrophages and exposed them to known drugs, targeting an in vitro-in vivo correlation (IVIVC) with a focus on the severity level and its related drug candidate. This co-culture assay addresses namely the intestinal barrier and the immune response in IBD. The drug efcacy was analyzed by an LPS-infammation of the co-culture and drug exposure according to the IBD treatment pyramid. Efcacy was defned as the range between LPS control (0%) and untreated co-culture (100%) independent of the investigated read-out (TEER, Papp, cytokine release: IL-6, IL-8, IL-10, TNF-α). The release of IL-6, IL-8, and TNF-α was identifed as an appropriate readout for a fast drug screening (“yes–no response”). TEER showed a remarkable IVIVC correlation to the human treatment pyramid (5-ASA, Prednisolone, 6-mercaptopurine, and infiximab) with an R2 of 0.68. Similar to the description of an adverse outcome pathway (AOP) framework, we advocate establishing an “Efcacy Outcome Pathways (EOPs)” framework for drug efcacy assays. The in vitro assay ofers an easy and scalable method for IBD drug screening with a focus on human data, which requires further validation

    Risk governance in organizations

    Get PDF
    Dieses Buch dokumentiert 10 Jahre Risk-Governance-Forschung an der Universität Siegen. In 50 Beiträgen reflektieren Forscher und Praktiker Risk Governance vor dem Hintergrund ihrer eigenen Forschungen und/oder Erfahrungen und geben jeweils einen Entwicklungsimpuls für die Zukunft der Risk Governance. Das Buch zeigt die große Bandbreite und Tiefe des Forschungsgebietes auf und diskutiert Grundannahmen, Implementierungsfragen, die Rolle der Risk Governance als Transformationsmotor, ihre Wirkung in den verschiedenen betrieblichen Funktionen, Entwicklungsperspektiven und den Beitrag der Risk Governance zu einer nachhaltigen Ausrichtung von Unternehmen.This book documents 10 years of risk governance research at the University of Siegen. In 50 contributions, researchers and practitioners reflect on risk governance against the background of their own research and/or experience and provide a development impetus for the future of risk governance. The book shows the wide range and depth of the research field and discusses basic assumptions, implementation issues, the role of risk governance as transformation engine, its impact in the various operational functions, development perspectives, and the contribution of risk governance to a sustainable orientation of companies

    Safety assessment of excipients (SAFE) for orally inhaled drug products.

    No full text
    The development of new orally inhaled drug products requires the demonstration of safety which must be proven in animal experiments. New in vitro methods may replace, or at least reduce, these animal experiments provided they are able to correctly predict the safety or eventual toxicity in humans. However, the challenge is to link human in vitro data to human in vivo data. We here present a new approach to the safety assessment of excipients (SAFE) for pulmonary drug delivery. The SAFE model is based on a dose response curve of 23 excipients tested on the human pulmonary epithelial cell lines A549 and Calu-3. The resulting in vitro IC50 values were correlated with the FDA-approved concentration in pharmaceutical products for either pulmonary (if available) or parenteral administration. Setting a threshold of 0.1% (1 mg/mL) for either value yielded four safety classes, allowed to link IC50 data as measured on human cell cultures in vitro with the concentrations of the same compounds in FDA-approved drug products. The necessary in vitro data for novel excipients can be easily generated while the SAFE approach allows putting them in the context for eventual use in human pulmonary drug products. Excipients, that are most likely not safe for use in humans, can be early excluded from further pharmaceutical development. The SAFE approach helps thus to avoid unnecessary animal experiments

    Modulating the Barrier Function of Human Alveolar Epithelial (hAELVi) Cell Monolayers as a Model of Inflammation.

    No full text
    The incidence of inflammatory lung diseases such as acute respiratory distress syndrome (ARDS) remains an important problem, particularly in the present time with the Covid-19 pandemic. However, an adequate in vitro test system to monitor the barrier function of the alveolar epithelium during inflammation and for assessing anti-inflammatory drugs is urgently needed. Therefore, we treated human Alveolar Epithelial Lentivirus-immortalised cells (hAELVi cells) with the pro-inflammatory cytokines TNF-α (25 ng/ml) and IFN-γ (30 ng/ml), in the presence or absence of hydrocortisone (HC). While TNF-α and IFN-γ are known to reduce epithelial barrier properties, HC could be expected to protect the barrier function and result in an anti-inflammatory effect. We investigated the impact of anti-inflammatory/inflammatory treatment on transepithelial electrical resistance (TEER) and the apparent permeability coefficient (P app ) of the low permeability marker sodium fluorescein (NaFlu). After incubating hAELVi cells for 48 hours with a combination of TNF-α and IFN-γ, there was a significant decrease in TEER and a significant increase in the P app . The presence of HC maintained the TEER values and barrier properties, so that no significant P app change was observed. By using hAELVi cells to study anti-inflammatory drugs in vitro, the need for animal experiments could be reduced and pulmonary drug development accelerated
    corecore