100 research outputs found

    Huge Transverse Magnetization in the Field-Induced Phase of the Antiferromagnetic Molecular Wheel CsFe8

    Full text link
    The 1H-NMR spectrum and nuclear relaxation rate 1/T_1 in the antiferromagnetic wheel CsFe8 were measured to characterize the previously observed magnetic field-induced low-temperature phase around the level crossing at 8 T. The data show that the phase is characterized by a huge staggered transverse polarization of the electronic Fe spins, and the opening of a gap, providing microscopic evidence for the interpretation of the phase as a field-induced magneto-elastic instability.Comment: 5 pages, 4 figures, REVTEX4, to appear in PR

    Haploinsufficiency for p190B RhoGAP inhibits MMTV-Neu tumor progression

    Get PDF
    Introduction: Rho signaling regulates key cellular processes including proliferation, survival, and migration, and it has been implicated in the development of many types of cancer including breast cancer. P190B Rho GTPase activating protein (RhoGAP) functions as a major inhibitor of the Rho GTPases. P190B is required for mammary gland morphogenesis, and overexpression of p190B in the mammary gland induces hyperplastic lesions. Hence, we hypothesized that p190B may play a pivotal role in mammary tumorigenesis. Methods: To investigate the effects of loss of p190B function on mammary tumor progression, p190B heterozygous mice were crossed with an MMTV-Neu breast cancer model. Effects of p190B deficiency on tumor latency, multiplicity, growth, preneoplastic progression and metastasis were evaluated. To investigate potential differences in tumor angiogenesis between the two groups, immunohistochemistry to detect von Willebrand factor was performed and quantified. To examine gene expression of potential mediators of the angiogenic switch, an angiogenesis PCR array was utilized and results were confirmed using immunohistochemistry. Finally, reciprocal transplantation of tumor fragments was performed to determine the impact of stromal deficiency of p190B on tumor angiogenesis. Results: P190B deficiency reduced tumor penetrance (53% of p190B+/Neup190B^{+/-}Neu mice vs. 100% of p190B+/+Neup190B^{+/+}Neu mice formed tumors) and markedly delayed tumor onset by an average of 46 weeks. Tumor multiplicity was also decreased, but an increase in the number of preneoplastic lesions was detected indicating that p190B deficiency inhibited preneoplastic progression. Angiogenesis was decreased in the p190B heterozygous tumors, and expression of a potent angiogenic inhibitor, thrombospondin-1, was elevated in p190B+/Neup190B^{+/-}Neu mammary glands. Transplantation of p190B+/Neup190B^{+/-}Neu tumor fragments into wild-type recipients restored tumor angiogenesis. Strikingly, p190B+/+Neup190B^{+/+}Neu tumor fragments were unable to grow when transplanted into p190B+/Neup190B^{+/-}Neu recipients. Conclusions: These data suggest that p190B haploinsufficiency in the epithelium inhibits MMTV-Neu tumor initiation. Furthermore, p190B deficiency in the vasculature is responsible, in part, for the inhibition of MMTV-Neu tumor progression

    Radon and risk of extrapulmonary cancers: results of the German uranium miners' cohort study, 1960–2003

    Get PDF
    Data from the German miners' cohort study were analysed to investigate whether radon in ambient air causes cancers other than lung cancer. The cohort includes 58 987 men who were employed for at least 6 months from 1946 to 1989 at the former Wismut uranium mining company in Eastern Germany. A total of 20 684 deaths were observed in the follow-up period from 1960 to 2003. The death rates for 24 individual cancer sites were compared with the age and calendar year-specific national death rates. Internal Poisson regression was used to estimate the excess relative risk (ERR) per unit of cumulative exposure to radon in working level months (WLM). The number of deaths observed (O) for extrapulmonary cancers combined was close to that expected (E) from national rates (n=3340, O/E=1.02; 95% confidence interval (CI): 0.98–1.05). Statistically significant increases in mortality were recorded for cancers of the stomach (O/E=1.15; 95% CI: 1.06–1.25) and liver (O/E=1.26; 95% CI: 1.07–1.48), whereas significant decreases were found for cancers of the tongue, mouth, salivary gland and pharynx combined (O/E=0.80; 95% CI: 0.65–0.97) and those of the bladder (O/E=0.82; 95% CI: 0.70–0.95). A statistically significant relationship with cumulative radon exposure was observed for all extrapulmonary cancers (ERR/WLM=0.014%; 95% CI: 0.006–0.023%). Most sites showed positive exposure–response relationships, but these were insignificant or became insignificant after adjustment for potential confounders such as arsenic or dust exposure. The present data provide some evidence of increased risk of extrapulmonary cancers associated with radon, but chance and confounding cannot be ruled out

    Breast cancer-specific mutations in CK1ε inhibit Wnt/β-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration

    Get PDF
    Introduction Breast cancer is one of the most common types of cancer in women. One of the genes that were found mutated in breast cancer is casein kinase 1 epsilon (CK1ε). Because CK1ε is a crucial regulator of the Wnt signaling cascades, we determined how these CK1ε mutations interfere with the Wnt pathway and affect the behavior of epithelial breast cancer cell lines. Methods We performed in silico modeling of various mutations and analyzed the kinase activity of the CK1ε mutants both in vitro and in vivo. Furthermore, we used reporter and small GTPase assays to identify how mutation of CK1ε affects different branches of the Wnt signaling pathway. Based on these results, we employed cell adhesion and cell migration assays in MCF7 cells to demonstrate a crucial role for CK1ε in these processes. Results In silico modeling and in vivo data showed that autophosphorylation at Thr 44, a site adjacent to the breast cancer point mutations in the N-terminal lobe of human CK1ε, is involved in positive regulation of the CK1ε activity. Our data further demonstrate that, in mammalian cells, mutated forms of CK1ε failed to affect the intracellular localization and phosphorylation of Dvl2; we were able to demonstrate that CK1ε mutants were unable to enhance Dvl-induced TCF/LEF-mediated transcription, that CK1ε mutants acted as loss-of-function in the Wnt/β-catenin pathway, and that CK1ε mutants activated the noncanonical Wnt/Rac-1 and NFAT pathways, similar to pharmacological inhibitors of CK1. In line with these findings, inhibition of CK1 promoted cell migration as well as decreased cell adhesion and E-cadherin expression in the breast cancer-derived cell line MCF7. Conclusions In summary, these data suggest that the mutations of CK1ε found in breast cancer can suppress Wnt/β-catenin as well as promote the Wnt/Rac-1/JNK and Wnt/NFAT pathways, thus contributing to breast cancer development via effects on cell adhesion and migration. In terms of molecular mechanism, our data indicate that the breast cancer point mutations in the N-terminal lobe of CK1ε, which are correlated with decreased phosphorylation activities of mutated forms of CK1ε both in vitro and in vivo, interfere with positive autophosphorylation at Thr 4

    Lung cancer risk among German male uranium miners: a cohort study, 1946–1998

    Get PDF
    From 1946 to 1990 extensive uranium mining was conducted in the southern parts of the former German Democratic Republic. The overall workforce included several 100 000 individuals. A cohort of 59 001 former male employees of the Wismut Company was established, forming a large retrospective uranium miners' cohort for the time period 1946–1998. Mean duration of follow-up was 30.5 years with a total of 1 801 630 person-years. Loss to follow-up was low at 5.3%. Of the workers, 16 598 (28.1%) died during the study period. Based on 2388 lung cancer deaths, the radon-related lung cancer risk is evaluated. The excess relative risk (ERR) per working level month (WLM) was estimated as 0.21% (95% CI: 0.18–0.24). It was dependent on time since exposure and on attained age. The highest ERR/WLM was observed 15–24 years after exposure and in the youngest age group (<55 years of age). While a strong inverse exposure-rate effect was detected for high exposures, no significant association was detected at exposures below 100 WLM. Excess relative risk /WLM was not modified by duration of exposure. The results would indicate the need to re-estimate the effects of risk modifying factors in current risk models as duration of exposure did not modify the ERR/WLM and there was only a modest decline of ERR/WLM with increasing time since exposure

    HGF-Induced PKCζ Activation Increases Functional CXCR4 Expression in Human Breast Cancer Cells

    Get PDF
    The chemokine receptor CXCR4 and its ligand CXCL12 have been shown to mediate the metastasis of many malignant tumors including breast carcinoma. Interaction between hepatocyte growth factor (HGF) and the Met receptor tyrosine kinase mediates development and progression of cancers. HGF is able to induce CXCR4 expression and contributes to tumor cell invasiveness in breast carcinoma. However, the mechanism of the CXCR4 expression modulated by c-Met-HGF axis to enhance the metastatic behavior of breast cancer cells is still unclear. In this study, we found that HGF induced functional CXCR4 receptor expression in breast cancer cells. The effect of HGF was specifically mediated by PKCζ activity. After transfection with PKCζ-siRNA, the phosphorylation of PKCζ and CXCR4 was abrogated in breast cancer cells. Interference with the activation of Rac1, a downstream target of HGF, prevented the HGF-induced increase in PKCζ activity and CXCR4 levels. The HGF-induced, LY294002-sensitive translocation of PKCζ from cytosol to plasma membrane indicated that HGF was capable of activating PKCζ, probably via phosphoinositide (PI) 3-kinases. HGF treatment also increased MT1-MMP secretion. Inhibition of PKCζ, Rac-1 and phosphatidylinositol 3-kinase may attenuate MT1-MMP expression in cells exposed to HGF. Functional manifestation of the effects of HGF revealed an increased ability for migration, chemotaxis and metastasis in MDA-MB-436 cells in vitro and in vivo. Our findings thus provided evidence that the process of HGF-induced functional CXCR4 expression may involve PI 3-kinase and atypical PKCζ. Moreover, HGF may promote the invasiveness and metastasis of breast tumor xenografts in BALB/c-nu mice via the PKCζ-mediated pathway, while suppression of PKCζ by RNA interference may abrogate cancer cell spreading

    p21-activated kinase signaling in breast cancer

    Get PDF
    The p21-activated kinases signal through a number of cellular pathways fundamental to growth, differentiation and apoptosis. A wealth of information has accumulated at an impressive pace in the recent past, both with regard to previously identified targets for p21-activated kinases that regulate the actin cytoskeleton and cellular stress pathways and with regard to newly identified targets and their role in cancer. Emerging data also provide new clues towards a previously unappreciated link between these various cellular processes. The present review attempts to provide a quick tutorial to the reader about the evolving significance of p21-activated kinases and small GTPases in breast cancer, using information from mouse models, tissue culture studies, and human materials

    Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition in Breast Cancer

    Get PDF
    Matrix metalloproteinases (MMPs) degrade and modify the extracellular matrix (ECM) as well as cell-ECM and cell-cell contacts, facilitating detachment of epithelial cells from the surrounding tissue. MMPs play key functions in embryonic development and mammary gland branching morphogenesis, but they are also upregulated in breast cancer, where they stimulate tumorigenesis, cancer cell invasion and metastasis. MMPs have been investigated as potential targets for cancer therapy, but clinical trials using broad-spectrum MMP inhibitors yielded disappointing results, due in part to lack of specificity toward individual MMPs and specific stages of tumor development. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells take on the characteristics of invasive mesenchymal cells, and activation of EMT has been implicated in tumor progression. Recent findings have implicated MMPs as promoters and mediators of developmental and pathogenic EMT processes in the breast. In this review, we will summarize recent studies showing how MMPs activate EMT in mammary gland development and in breast cancer, and how MMPs mediate breast cancer cell motility, invasion, and EMT-driven breast cancer progression. We also suggest approaches to inhibit these MMP-mediated malignant processes for therapeutic benefit
    corecore