931 research outputs found
Enhancement of the upper critical field in codoped iron-arsenic high-temperature superconductors
We present the first study of codoped iron-arsenide superconductors of the
122 family (Sr/Ba)_(1-x)K_xFe_(2-y)Co_yAs_2 with the purpose to increase the
upper critical field H_c2 compared to single doped (Sr/Ba)Fe_2As_2 materials.
H_c2 was investigated by measuring the magnetoresistance in high pulsed
magnetic fields up to 64 T. We find, that H_c2 extrapolated to T = 0 is indeed
enhanced significantly to ~ 90 T for polycrystalline samples of
Ba_0.55K_0.45Fe_1.95Co_0.05As_2 compared to ~75 T for Ba_0.55K_0.45Fe_2As_2 and
BaFe_1.8Co_0.2As_2 single crystals. Codoping thus is a promising way for the
systematic optimization of iron-arsenic based superconductors for
magnetic-field and high-current applications.Comment: 7 pages, 5 figures, submitted to Journal of Applied Physic
Microscopic magnetic modeling for the =1/2 alternating chain compounds NaCuSbO and NaCuTeO
The spin-1/2 alternating Heisenberg chain system NaCuSbO features
two relevant exchange couplings: within the structural CuO
dimers and between the dimers. Motivated by the controversially
discussed nature of , we perform extensive density-functional-theory
(DFT) calculations, including DFT+ and hybrid functionals. Fits to the
experimental magnetic susceptibility using high-temperature series expansions
and quantum Monte Carlo simulations yield the optimal parameters =
217 K and = 174 K with the alternation ratio 1.25. For the closely related system
NaCuTeO, DFT yields substantially enhanced , but weaker
. The comparative analysis renders the buckling of the chains as the
key parameter altering the magnetic coupling regime. Numerical simulation of
the dispersion relations of the alternating chain model clarify why both
antiferromagnetic and ferrromagnetic can reproduce the experimental
magnetic susceptibility data.Comment: published version: 11 pages, 8 figures, 5 tables + Supplemental
materia
Competition of local-moment ferromagnetism and superconductivity in Co-substituted EuFe2As2
In contrast to SrFe2As2, where only the iron possesses a magnetic moment, in
EuFe2As2 an additional large, local magnetic moment is carried by Eu2+. Like
SrFe2As2, EuFe2As2 exhibits a spin-density wave transition at high
temperatures, but in addition the magnetic moments of the Eu2+ order at around
20 K. The interplay of pressure-induced superconductivity and the Eu2+ order
leads to a behavior which is reminiscent of re-entrant superconductivity as it
was observed, for example, in the ternary Chevrel phases or in the rare-earth
nickel borocarbides. Here, we study the delicate interplay of the ordering of
the Eu2+ moments and superconductivity in EuFe1.9Co0.1As2, where application of
external pressure makes it possible to sensitively tune the ratio of the
magnetic (T_C) and the superconducting (T_{c,onset}) critical temperatures. We
find that superconductivity disappears once T_C > T_{c,onset}.Comment: 4 pages, 4 figures, submitted to the proceedings of SCES201
Superconductivity in SrFe_(2-x)Co_xAs_2: Internal Doping of the Iron Arsenide Layers
In the electron doped compounds SrFe_(2-x)Co_xAs_2 superconductivity with T_c
up to 20 K is observed for 0.2 < x < 0.4. Results of structure determination,
magnetic susceptibility, electrical resistivity, and specific heat are
reported. The observation of bulk superconductivity in all thermodynamic
properties -- despite strong disorder in the Fe-As layer -- favors an itinerant
picture in contrast to the cuprates and renders a p- or d-wave scenario
unlikely. DFT calculations find that the substitution of Fe by Co (x > 0.3)
leads to the suppression of the magnetic ordering present in SrFe_2As_2 due to
a rigid down-shift of the Fe-3d_(x^2-y^2) related band edge in the density of
states.Comment: 5 pages, 3 figure
Electronic structure and magnetic properties of the spin-1/2 Heisenberg system CuSe2O5
A microscopic magnetic model for the spin-1/2 Heisenberg chain compound
CuSe2O5 is developed based on the results of a joint experimental and
theoretical study. Magnetic susceptibility and specific heat data give evidence
for quasi-1D magnetism with leading antiferromagnetic (AFM) couplings and an
AFM ordering temperature of 17 K. For microscopic insight, full-potential DFT
calculations within the local density approximation (LDA) were performed. Using
the resulting band structure, a consistent set of transfer integrals for an
effective one-band tight-binding model was obtained. Electronic correlations
were treated on a mean-field level starting from LDA (LSDA+U method) and on a
model level (Hubbard model). In excellent agreement of experiment and theory,
we find that only two couplings in CuSe2O5 are relevant: the nearest-neighbour
intra-chain interaction of 165 K and a non-frustrated inter-chain coupling of
20 K. From a comparison with structurally related systems (Sr2Cu(PO4)2,
Bi2CuO4), general implications for a magnetic ordering in presence of
inter-chain frustration are made.Comment: 20 pages, 8 figures, 3 table
Large Noncollinearity and Spin Reorientation in the Novel Mn2RhSn Heusler Magnet
Noncollinear magnets provide essential ingredients for the next generation
memory technology. It is a new prospect for the Heusler materials, already well
known due to the diverse range of other fundamental characteristics. Here, we
present a combined experimental and theoretical study of novel noncollinear
tetragonal Mn2RhSn Heusler material exhibiting unusually strong canting of its
magnetic sublattices. It undergoes a spin-reorientation transition, induced by
a temperature change and suppressed by an external magnetic field. Because of
the presence of Dzyaloshinskii-Moriya exchange and magnetic anisotropy, Mn2RhSn
is suggested to be a promising candidate for realizing the Skyrmion state in
the Heusler family
Growth dynamics of a Bose-Einstein condensate in a dimple trap without cooling
We study the formation of a Bose-Einstein condensate in a cigar-shaped
three-dimensional harmonic trap, induced by the controlled addition of an
attractive "dimple" potential along the weak axis. In this manner we are able
to induce condensation without cooling due to a localized increase in the phase
space density. We perform a quantitative analysis of the thermodynamic
transformation in both the sudden and adiabatic regimes for a range of dimple
widths and depths. We find good agreement with equilibrium calculations based
on self-consistent semiclassical Hartree-Fock theory describing the condensate
and thermal cloud. We observe there is an optimal dimple depth that results in
a maximum in the condensate fraction. We also study the non-equilibrium
dynamics of condensate formation in the sudden turn-on regime, finding good
agreement for the observed time dependence of the condensate fraction with
calculations based on quantum kinetic theory.Comment: v1: 9 pages, 7 figures, submitted to Phys. Rev. A; v2: 10 pages, 8
figures, fixed typos, added references, additional details on experimental
procedure, values of phase-space density, new figure and discussion on
effects of three-body loss in Appendix B (replaced with published version
Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms
We demonstrate a novel experimental arrangement which rotates a 2D optical
lattice at frequencies up to several kilohertz. Ultracold atoms in such a
rotating lattice can be used for the direct quantum simulation of strongly
correlated systems under large effective magnetic fields, allowing
investigation of phenomena such as the fractional quantum Hall effect. Our
arrangement also allows the periodicity of a 2D optical lattice to be varied
dynamically, producing a 2D accordion lattice.Comment: 7 pages, 5 figures, final versio
High spin polarization in the ferromagnetic filled skutterudites KFe4Sb12 and NaFe4Sb12
The spin polarization of ferromagnetic alkali-metal iron antimonides KFe4Sb12
and NaFe4Sb12 is studied by point-contact Andreev reflection using
superconducting Nb and Pb tips. From these measurements an intrinsic transport
spin polarization Pt of 67% and 60% for the K and Na compound, respectively, is
inferred which establishes these materials as a new class of highly spin
polarized ferromagnets. The results are in accord with band structure
calculations within the local spin density approximation (LSDA) that predict
nearly 100% spin polarization in the density of states. We discuss the impact
of calculated Fermi velocities and spin fluctuations on Pt.Comment: Pdf file with fi
- …