65 research outputs found

    Dimensions of Animal Consciousness.

    Get PDF
    How does consciousness vary across the animal kingdom? Are some animals 'more conscious' than others? This article presents a multidimensional framework for understanding interspecies variation in states of consciousness. The framework distinguishes five key dimensions of variation: perceptual richness, evaluative richness, integration at a time, integration across time, and self-consciousness. For each dimension, existing experiments that bear on it are reviewed and future experiments are suggested. By assessing a given species against each dimension, we can construct a consciousness profile for that species. On this framework, there is no single scale along which species can be ranked as more or less conscious. Rather, each species has its own distinctive consciousness profile

    Lateralization of eye use in cuttlefish : opposite direction for anti-predatory and predatory behaviors

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Physiology 7 (2016): 620, doi:10.3389/fphys.2016.00620.Vertebrates with laterally placed eyes typically exhibit preferential eye use for ecological activities such as scanning for predators or prey. Processing visual information predominately through the left or right visual field has been associated with specialized function of the left and right brain. Lateralized vertebrates often share a general pattern of lateralized brain function at the population level, whereby the left hemisphere controls routine behaviors and the right hemisphere controls emergency responses. Recent studies have shown evidence of preferential eye use in some invertebrates, but whether the visual fields are predominately associated with specific ecological activities remains untested. We used the European common cuttlefish, Sepia officinalis, to investigate whether the visual field they use is the same, or different, during anti-predatory, and predatory behavior. To test for lateralization of anti-predatory behavior, individual cuttlefish were placed in a new environment with opaque walls, thereby obliging them to choose which eye to orient away from the opaque wall to scan for potential predators (i.e., vigilant scanning). To test for lateralization of predatory behavior, individual cuttlefish were placed in the apex of an isosceles triangular arena and presented with two shrimp in opposite vertexes, thus requiring the cuttlefish to choose between attacking a prey item to the left or to the right of them. Cuttlefish were significantly more likely to favor the left visual field to scan for potential predators and the right visual field for prey attack. Moreover, individual cuttlefish that were leftward directed for vigilant scanning were predominately rightward directed for prey attack. Lateralized individuals also showed faster decision-making when presented with prey simultaneously. Cuttlefish appear to have opposite directions of lateralization for anti-predatory and predatory behavior, suggesting that there is functional specialization of each optic lobe (i.e., brain structures implicated in visual processing). These results are discussed in relation to the role of lateralized brain function and the evolution of population level lateralization.This work was supported by a post-doctoral study grant from the Fyssen Foundation to AS, and by a research grant “Sélavie” from the Fyssen Foundation to CJ-A. The Sholley Foundation provided partial support for the research in Woods Hole

    Review of the evidence of sentience in cephalopod molluscs and decapod crustaceans

    Get PDF
    Sentience is the capacity to have feelings, such as feelings of pain, pleasure, hunger, thirst, warmth, joy, comfort and excitement. It is not simply the capacity to feel pain, but feelings of pain, distress or harm, broadly understood, have a special significance for animal welfare law. Drawing on over 300 scientific studies, we have evaluated the evidence of sentience in two groups of invertebrate animals: the cephalopod molluscs or, for short, cephalopods (including octopods, squid and cuttlefish) and the decapod crustaceans or, for short, decapods (including crabs, lobsters and crayfish). We have also evaluated the potential welfare implications of current commercial practices involving these animals

    Jays are sensitive to cognitive illusions.

    Get PDF
    Funder: CA.RI.PA.RO FoundationJays hide food caches, steal them from conspecifics and use tactics to minimize cache theft. Jays are sensitive to the content of their own caches, retrieving items depending on their preferences and the perishability of the cached item. Whether jays impose the same content sensitivity when they steal caches is less clear. We adapted the 'cups-and-balls' magic routine, creating a cognitive illusion to test whether jays are sensitive to the (i) content of hidden items and (ii) type of displacement. Subjects were presented with two conditions in which hidden food was consistent with their expectations; and two conditions in which food was manipulated to violate their expectations by switching their second preferred food for their preferred food (up-value) or vice versa (de-value). Subjects readily accepted food when it was consistent with their expectations but were more likely to re-inspect the baited cup and alternative cup when their expectations were violated. In the de-value condition, jays exhibited longer latencies to consume the food and often rejected it. Dominant subjects were more likely to reject the food, suggesting that social factors influence their responses to cognitive illusions. Using cognitive illusions offers innovative avenues for investigating the psychological constraints in diverse animal minds

    Buoys with looming eyes deter seaducks and could potentially reduce seabird bycatch in gillnets.

    Get PDF
    Bycatch of seabirds in gillnet fisheries is a global conservation issue with an estimated 400 000 seabirds killed each year. To date, no underwater deterrents trialled have consistently reduced seabird bycatch across operational fisheries. Using a combination of insights from land-based strategies, seabirds' diving behaviours and their cognitive abilities, we developed a floating device exploring the effect of large eyespots and looming movement to prevent vulnerable seabirds from diving into gillnets. Here, we tested whether this novel above-water device called 'Looming eyes buoy' (LEB) would consistently deter vulnerable seaducks from a focal area. We counted the number of birds present in areas with and without LEBs in a controlled experimental setting. We show that long-tailed duck Clangula hyemalis abundance declined by approximately 20-30% within a 50 m radius of the LEB and that the presence of LEBs was the most important variable explaining this decline. We found no evidence for a memory effect on long-tailed ducks but found some habituation to the LEB within the time frame of the project (62 days). While further research is needed, our preliminary trials indicate that above-water visual devices could potentially contribute to reduce seabird bycatch if appropriately deployed in coordination with other management measures

    Episodic-like memory is preserved with age in cuttlefish

    Get PDF
    Funder: European Research CouncilFunder: Grass Foundation; Id: http://dx.doi.org/10.13039/100001654Funder: Royal Society; Id: http://dx.doi.org/10.13039/501100000288Funder: Fyssen FoundationFunder: Australian Government; Id: http://dx.doi.org/10.13039/100015539Episodic memory, remembering past experiences based on unique what–where–when components, declines during ageing in humans, as does episodic-like memory in non-human mammals. By contrast, semantic memory, remembering learnt knowledge without recalling unique what–where–when features, remains relatively intact with advancing age. The age-related decline in episodic memory likely stems from the deteriorating function of the hippocampus in the brain. Whether episodic memory can deteriorate with age in species that lack a hippocampus is unknown. Cuttlefish are molluscs that lack a hippocampus. We test both semantic-like and episodic-like memory in sub-adults and aged-adults nearing senescence (n = 6 per cohort). In the semantic-like memory task, cuttlefish had to learn that the location of a food resource was dependent on the time of day. Performance, measured as proportion of correct trials, was comparable across age groups. In the episodic-like memory task, cuttlefish had to solve a foraging task by retrieving what–where–when information about a past event with unique spatio-temporal features. In this task, performance was comparable across age groups; however, aged-adults reached the success criterion (8/10 correct choices in consecutive trials) significantly faster than sub-adults. Contrary to other animals, episodic-like memory is preserved in aged cuttlefish, suggesting that memory deterioration is delayed in this species
    • …
    corecore