38,495 research outputs found
The reflection and transmission properties of a triple band dichroic surface
The development of a triple-band dichroic surface design is detailed that is reflective in the Ka-band from 22.5 to 27.3 GHz and the Ku-band from 13.7 to 15.1 GHz, yet transparent in the S-band from 2.0 to 2.3 GHz, for all planes of incidence, and for all angles of incidence out to eta = 45 deg. The design is comprised of two gangbuster whole-surfaces separated by a distance, d, that is comparable to a fraction of a wavelength in S-band, and enhanced by the addition of a dielectric matching plate. The gangbuster array is comprised of tightly packed straight skewed dipole elements referred to as half-surfaces. Two of these half-surfaces are oriented orthogonal to each other and placed an array separation distance, s, apart to form the gangbuster whole-surface which allows any arbitrary plane of incidence. Results are given for the triple-band design with and without dielectric and conduction losses. The cross polarization properties of the dichroic surface was further investigated. It is shown that the reflection cross polarized component is dominated by the geometry of the front whole surface of the design (particularly the array separation s) and is never more than -22.5 dB in the frequency band 0 to 30 GHz. The transmission cross polarization component is dependent on both whole-surfaces and is never more than -30 dB in the same frequency band
The new tungsten-filament lamp standards of total irradiance
Instrumentation and methods used in establishing tungsten-filament lamp standards of total irradianc
Finite-Difference and Pseudospectral Time-Domain Methods Applied to Backwards-Wave Metamaterials
Backwards-wave (BW) materials that have simultaneously negative real parts of
their electric permittivity and magnetic permeability can support waves where
phase and power propagation occur in opposite directions. These materials were
predicted to have many unusual electromagnetic properties, among them
amplification of the near-field of a point source, which could lead to the
perfect reconstruction of the source field in an image [J. Pendry, Phys. Rev.
Lett. \textbf{85}, 3966 (2000)]. Often systems containing BW materials are
simulated using the finite-difference time-domain technique. We show that this
technique suffers from a numerical artifact due to its staggered grid that
makes its use in simulations involving BW materials problematic. The
pseudospectral time-domain technique, on the other hand, uses a collocated grid
and is free of this artifact.
It is also shown that when modeling the dispersive BW material, the linear
frequency approximation method introduces error that affects the frequency of
vanishing reflection, while the auxiliary differential equation, the Z
transform, and the bilinear frequency approximation method produce vanishing
reflection at the correct frequency. The case of vanishing reflection is of
particular interest for field reconstruction in imaging applications.Comment: 9 pages, 8 figures, accepted by IEEE Transactions on Antennas and
Propagatio
Origin of Lagrangian Intermittency in Drift-Wave Turbulence
The Lagrangian velocity statistics of dissipative drift-wave turbulence are
investigated. For large values of the adiabaticity (or small collisionality),
the probability density function of the Lagrangian acceleration shows
exponential tails, as opposed to the stretched exponential or algebraic tails,
generally observed for the highly intermittent acceleration of Navier-Stokes
turbulence. This exponential distribution is shown to be a robust feature
independent of the Reynolds number. For small adiabaticity, algebraic tails are
observed, suggesting the strong influence of point-vortex-like dynamics on the
acceleration. A causal connection is found between the shape of the probability
density function and the autocorrelation of the norm of the acceleration
Hall effect in laser ablated Co_2(Mn,Fe)Si thin films
Pulsed laser deposition was employed to grow thin films of the Heusler
compounds Co_2MnSi and Co_2FeSi. Epitaxial growth was realized both directly on
MgO (100) and on a Cr or Fe buffer layer. Structural analysis by x-ray and
electron diffraction shows for both materials the ordered L2_1 structure. Bulk
magnetization was determined with a SQUID magnetometer. The values agree with
the Slater-Pauling rule for half-metallic Heusler compounds. On the films grown
directly on the substrate measurements of the Hall effect have been performed.
The normal Hall effect is nearly temperature independent and points towards a
compensated Fermi surface. The anomalous contribution is found to be dominated
by skew scattering. A remarkable sign change of both normal and anomalous Hall
coefficients is observed on changing the valence electron count from 29 (Mn) to
30 (Fe).Comment: 9 pages, 6 figures submitted to J Phys
A new experimental tool to overcome a misconception concerning heat and internal energy
Nous présentons un dispositif expérimental permettant de faire comprendre aux étudiants la différence existant entre chaleur et énergie interne.An experimental device is presented to overcome the difficulties encountered by students when studying heat and internal energy
4-Methoxycinnamic acid – An unusual phenylpropanoid involved in phenylphenalenone biosynthesis in Anigozanthos preissii
AbstractIn vitro root cultures of Anigozanthos preissii and Wachendorfia thyrsiflora (Haemodoraceae) are suitable biological systems for studying the biosynthesis of phenylphenalenones. Here we report how we used these root cultures to investigate precursor–product relationships between phenylpropanoids and phenylphenalenones whose phenyl rings share identical substitution patterns. Four phenylpropanoic acids, including ferulic acid and the unusual 4-methoxycinnamic acid, were used in 13C-labeled form as substrates to study their incorporation into phenylphenalenones. In addition to the previously reported 2-hydroxy-9-(4′-hydroxy-3′-methoxyphenyl)-1H-phenalen-1-one (trivial name musanolone F), 2-hydroxy-9-(4′-methoxyphenyl)-1H-phenalen-1-one (proposed trivial name 4′-methoxyanigorufone) was found as a biosynthetic product in A. preissii. The carbon skeleton of 4′-methoxycinnamic acid was biosynthetically incorporated as an intact unit including its 4′-O-methyl substituent at the lateral phenyl ring. 4′-Methoxyanigorufone is reported here for the first time as a natural product
Novel structural features of the ripple phase of phospholipids
We have calculated the electron density maps of the ripple phase of
dimyristoylphosphatidylcholine (DMPC) and palmitoyl-oleoyl phosphatidylcholine
(POPC) multibilayers at different temperatures and fixed relative humidity. Our
analysis establishes, for the first time, the existence of an average tilt of
the hydrocarbon chains of the lipid molecules along the direction of the ripple
wave vector, which we believe is responsible for the occurrence of asymmetric
ripples in these systems
- …