46,336 research outputs found

    A New General Method to Generate Random Modal Formulae for Testing Decision Procedures

    Full text link
    The recent emergence of heavily-optimized modal decision procedures has highlighted the key role of empirical testing in this domain. Unfortunately, the introduction of extensive empirical tests for modal logics is recent, and so far none of the proposed test generators is very satisfactory. To cope with this fact, we present a new random generation method that provides benefits over previous methods for generating empirical tests. It fixes and much generalizes one of the best-known methods, the random CNF_[]m test, allowing for generating a much wider variety of problems, covering in principle the whole input space. Our new method produces much more suitable test sets for the current generation of modal decision procedures. We analyze the features of the new method by means of an extensive collection of empirical tests

    Spectroscopic investigations of plasma properties quarterly summary report no. 2, 11 aug. - 10 nov. 1964

    Get PDF
    Performance of plasma source operated with helium - intensity and temperature profiles of source electronic instrumentation for detecting weak spectrum line

    Experimental probing of the anisotropy of the empty p states near the Fermi level in MgB2

    Full text link
    We have studied the Boron K-edge in the superconductor MgB2 by electron energy loss spectroscopy (EELS) and experimentally resolved the empty p states at the Fermi level that have previously been observed within an energy window of 0.8eV by soft x-ray absorption spectroscopy. Using angular resolved EELS, we find that these states at the immediate edge onset have pxy character in agreement with predictions from first-principle electronic structure calculations.Comment: 15 pages, 5 figure

    Evolution of Mass Functions of Coeval Stars through Wind Mass Loss and Binary Interactions

    Get PDF
    Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyse the evolution of stellar mass functions of coeval main sequence stars including all relevant aspects of single- and binary-star evolution. We show that the slope of the upper part of the mass function in a stellar cluster can be quite different to the slope of the initial mass function. Wind mass loss from massive stars leads to an accumulation of stars which is visible as a peak at the high mass end of mass functions, thereby flattening the mass function slope. Mass accretion and mergers in close binary systems create a tail of rejuvenated binary products. These blue straggler stars extend the single star mass function by up to a factor of two in mass and can appear up to ten times younger than their parent stellar cluster. Cluster ages derived from their most massive stars that are close to the turn-off may thus be significantly biased. To overcome such difficulties, we propose the use of the binary tail of stellar mass functions as an unambiguous clock to derive the cluster age because the location of the onset of the binary tail identifies the cluster turn-off mass. It is indicated by a pronounced jump in the mass function of old stellar populations and by the wind mass loss peak in young stellar populations. We further characterise the binary induced blue straggler population in star clusters in terms of their frequency, binary fraction and apparent age.Comment: 21 pages, 22 figures, accepted for publication in Ap

    Dust from AGBs: relevant factors and modelling uncertainties

    Get PDF
    The dust formation process in the winds of Asymptotic Giant Branch stars is discussed, based on full evolutionary models of stars with mass in the range 11M⊙≤_{\odot} \leqM≤8\leq 8M⊙_{\odot}, and metallicities 0.001<Z<0.0080.001 < Z <0.008. Dust grains are assumed to form in an isotropically expanding wind, by growth of pre--existing seed nuclei. Convection, for what concerns the treatment of convective borders and the efficiency of the schematization adopted, turns out to be the physical ingredient used to calculate the evolutionary sequences with the highest impact on the results obtained. Low--mass stars with M≤3\leq 3M⊙_{\odot} produce carbon type dust with also traces of silicon carbide. The mass of solid carbon formed, fairly independently of metallicity, ranges from a few 10−410^{-4}M⊙_{\odot}, for stars of initial mass 1−1.51-1.5M⊙_{\odot}, to ∼10−2\sim 10^{-2}M⊙_{\odot} for M∼2−2.5\sim 2-2.5M⊙_{\odot}; the size of dust particles is in the range 0.1μ0.1 \mum≤aC≤0.2μ\leq a_C \leq 0.2\mum. On the contrary, the production of silicon carbide (SiC) depends on metallicity. For 10−3≤Z≤8×10−310^{-3} \leq Z \leq 8\times 10^{-3} the size of SiC grains varies in the range 0.05μm<aSiC<0.1μ0.05 \mu {\rm m} < {\rm a_{SiC}} < 0.1 \mum, while the mass of SiC formed is 10−5M⊙<MSiC<10−3M⊙10^{-5}{\rm M}_{\odot} < {\rm M_{SiC}} < 10^{-3}{\rm M}_{\odot}. Models of higher mass experience Hot Bottom Burning, which prevents the formation of carbon stars, and favours the formation of silicates and corundum. In this case the results scale with metallicity, owing to the larger silicon and aluminium contained in higher--Z models. At Z=8×10−38\times 10^{-3} we find that the most massive stars produce dust masses md∼0.01m_d \sim 0.01M⊙_{\odot}, whereas models of smaller mass produce a dust mass ten times smaller. The main component of dust are silicates, although corundum is also formed, in not negligible quantities (∼10−20%\sim 10-20\%).Comment: Paper accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journal (2014 January 4

    Effects of dark matter annihilation on the first stars

    Full text link
    We study the evolution of the first stars in the universe (Population III) from the early pre-Main Sequence until the end of helium burning in the presence of WIMP dark matter annihilation inside the stellar structure. The two different mechanisms that can provide this energy source are the contemporary contraction of baryons and dark matter, and the capture of WIMPs by scattering off the gas with subsequent accumulation inside the star. We find that the first mechanism can generate an equilibrium phase, previously known as a "dark star", which is transient and present in the very early stages of pre-MS evolution. The mechanism of scattering and capture acts later, and can support the star virtually forever, depending on environmental characteristic of the dark matter halo and on the specific WIMP model.Comment: Proceedings of the IAU Symposium 255, "Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies"; L.K. Hunt, S. Madden and R. Schneider ed
    • …
    corecore