1

Photosynthetic Light-Harvesting Systems Organization and Function

Proceedings of an International Workshop October 12–16, 1987 Freising, Fed. Rep. of Germany

Editors Hugo Scheer · Siegfried Schneider

Walter de Gruyter · Berlin · New York 1988

CONTENTS

List of Participants	XII
SECTION I. ORGANIZATION: BIOCHEMICAL METHODS	
Introduction: The Biochemistry of Light-Harvesting Complexes by R.J. Cogdell	1
Phycobilisome-Thylakoid Interaction: The Nature of High Molecular Weight Polypeptides by E. Gantt C.A. Lipschultz and F.X. Cunningham Jr	11
On the Structure of Photosystem II-Phycobilisome Complexes of Cyanobacteria by E. Mörschel and GH. Schatz	21
Structure of Cryptophyte Photosynthetic Membranes by W. Wehrmeyer	35
Structural and Phylogenetic Relationships of Phycoerythrins from Cyanobacteria, Red Algae and Cryptophyceae by W. Sidler and H. Zuber	49
Isolation and Characterization of the Components of the Phycobilisome from Mastigocladus laminosus and Crosslinking Experiments by R. Rümbeli and H. Zuber	61
C-Phycocyanin from Mastigocladus laminosus: Chromophore Assignment in Higher Aggregates by Cystein Modification by R. Fischer, S. Siebzehnrübl and H. Scheer	71
Photochromic Properties of C-Phycocyanin by G. Schmidt, S. Siebzehnrübl, R. Fischer and H. Scheer	77
Concerning the Relationship of Light Harvesting Bili- proteins to Phycochromes in Cyanobacteria by W. Kufer	89
Subunit Structure and Reassembly of the Light-Harvesting Complex from Rhodospirillum rubrum G9+ by R. Ghosh, Th. Rosatzin and R. Bachofen	93
Primary Structure Analyses of Bacterial Antenna Polypeptides - Correlation of Aromatic Amino Acids with Spectral Properties - Structural Similarities with Reaction Center Polypeptides	
by R.A. Brunisholz and H. Zuber	103

The Structure of the "Core" of the Purple Bacterial Photo- synthetic Unit	445
by D.J. Dawkins, L.A. Ferguson and R.J. Cogdell	115
A Comparison of the Bacteriochlorophyll CBinding Proteins of Chlorobium and Chloroflexus by P.D. Gerola, P. Højrup and J.M. Olson	129
Interactions between Bacteriochlorophyll c Molecules in Oligomers and in Chlorosomes of Green Photosynthetic Bacteria by D.C. Brune, G.H. King and R.E. Blankenship	141
Light-Harvesting Complexes of Chlorophyll c-Containing Algae by A.W.D. Larkum and R.G. Hiller	153
Isolation and Characterization of a Chlorophyll a/c-Hetero- xanthin/Diadinoxanthin Light-Harvesting Complex from Pleurochloris meiringensis (Xanthophyceae) by C. Wilhelm, C. Büchel and B. Rousseau	167
The Antenna Components of Photosystem II with Emphasis on the Major Pigment-Protein, LHC IIb by G.F. Peter and P. Thornber	175
SECTION II: ORGANIZATION: MOLECULAR GENETICS AND CRYSTALLOGRAPHY	
Molecular Biology of Antennas by G. Drews	187
High-Resolution Crystal Structure of C-Phycocyanin and Polarized Optical Spectra of Single Crystals by T. Schirmer, W. Bode and R. Huber	195
Crystallization and Spectroscopic Investigation of Purple Bacterial B800-850 and RC-B875 Complexes by W. Welte, T. Wacker and A. Becker	201
Structure of the Light-Harvesting Chlorophyll a/b-Protein Complex from Chloroplast Membranes by W. Kühlbrandt	211
Phycobilisomes of Synchechococcus Sp. PCC 7002, Pseudanabaena Sp. PCC 7409, and Cyanophora paradoxa: An Analysis by Molecular Genetics by D.A. Bryant	217
Organization and Assembly of Bacterial Antenna Complexes by G. Drews	

The Use of Mutants to Investigate the Organization of the Photosynthetic Apparatus of Rhodobacter sphaeroides by C.N. Hunter and R. van Grondelle	47
Mechanisms of Plastid and Nuclear Gene Expression During Thylakoid Membrane Biogenesis in Higher Plants by P. Westhoff, H. Grüne, H. Schrubar, A. Oswald, M. Streubel, U. Ljungberg and R.G. Herrmann	61
SECTION III: ORGANIZATION: SPECIAL SPECTROSCOPY TECHNIQUES AND MODELS	
Assignment of Spectral Forms in the Photosynthetic Antennas to Chemically Defined Chromophores by A. Scherz	77
Linear Dichroism and Orientation of Pigments in Phycobilisomes and their Subunits by L. Juszcak, N.E. Geacintov, B.A. Zilinskas and J. Breton 28	81
Low Temperature Spectroscopy of Cyanobacterial Antenna Pigments by W. Köhler, J. Friedrich, R. Fischer and H. Scheer	93
Chromophore Conformations in Phycocyanin and Allophycocyanin as Studied by Resonance Raman Spectroscopy by B. Szalontai, V. Csizmadia, Z. Gombos, K. Csatorday and M. Lutz	07
Coherent Anti-Stokes Raman Spectroscopy of Phycobilisomes, Phycocyanin and Allophycocyanin from Mastigocladus laminosus	
by S. Schneider, F. Baumann, W. Steiner, R. Fischer, S. Siebzehnrübl and H. Scheer	17
Optical Absorption and Circular Dichroism of Bacteriochlorophyll Oligomers in Triton X-100 and in the Light-Harvesting-Complex B850; A Comparative Study by V. Rozenbach-Belkin, P. Braun, P. Kovatch and A.Scherz	23
Absorption Detected Magnetic Resonance in Zero Magnetic Field on Antenna Complexes from Rps. acidophila 7050 - The Temperature Dependence of the Carotenoid TripTet State	
by J. Ullrich, J.U. v. Schütz and H.C. Wolf 3	39
Effect of Lithium Dodecyl Sulfate on B 800-850 Antenna Complexes from Rhodopseudomonas acidophila: A Resonance Raman Study by B. Robert and H. Frank	49

Bacteriochlorophyll a/b in Antenna Complexes of Purple Bacteria by B. Robert, A. Vermeglio, R. Steiner, H. Scheer and M. Lutz	355
Bacteriochlorophyll c Aggregates in Carbon Tetrachloride as Models for Chlorophyll Organization in Green Photo- synthetic Bacteria by J.M. Olson and J.P. Pedersen	365
Orientation of the Pigments in the Reaction Center and the Core Antenna of Photosystem II by J. Breton, J. Duranton and K. Satoh	375
Non-Linear Absorption Spectroscopy of Antenna Chlorophyll a in Higher Plants by D. Leupold, H. Stiel and P. Hoffmann	387
SECTION IV: FUNCTION: ELECTRONIC EXCITATION AND ENERGY TRANSFER	
Excitation Energy Transfer in Photosynthesis by R. van Grondelle and V. Sundström	403
Fluorescence Spectroscopy of Allophycocyanin Complexes from Synechococcus 6301 Strain AN112 by P.Maxson, K. Sauer and A.N. Glazer	439
Picosecond Energy Transfer Kinetics in Allophycocyanin Aggregates from Mastigocladus laminosus by E. Bittersmann, W. Reuter, W. Wehrmeyer and A.R. Holzwarth	451
Picosecond Time-Resolved Energy Transfer Kinetics within C-Phycocyanin and Allophycocyanin Aggregates by T. Gillbro, A. Sandström, V. Sundström, R. Fischer and H. Scheer	457
Energy Transfer in "Native" and Chemically Modified C-Phycocyanin Trimers and the Constituent Subunits by S. Schneider, P. Geiselhart, F. Baumann, S. Siebzehnrübl, R. Fischer and H. Scheer	469
Effect of Protein Environment and Excitonic Coupling on the Excited-State Properties of the Bilinchromophores in C-Phycocyanin by S. Schneider, Ch. Scharnagl, M. Dürring, T. Schirmer and W. Bode	483
Excitation Energy Migration in C-Phycocyanin Aggregates Isolated from Phormidium luridum: Predictions from the Förster's Inductive Resonance Theory by J. Grabowski and G.S. Björn	

Energy Transfer Calculations for two C-Phycocyanins Based on Refined X-Ray Crystal Structure Coordinates of Chromophores by K. Sauer and H. Scheer	507
Energy Transfer in Light-Harvesting Antenna of Purple Bacteria Studied by Picosecond Spectroscopy by V. Sundström, H. Bergström, T. Gillbro, R. van Grondelle, W. Westerhuis, R.A. Niederman and R.J. Cogdell	513
Excitation Energy Transfer in the Light-Harvesting Antenna of Photosynthetic Purple Bacteria: The Role of the Long-Wave- Length Absorbing Pigment B896 by R. van Grondelle, H. Bergström, V. Sundström, R.J. van Dorssen, M. Vos and C.N. Hunter	519
The Function of Chlorosomes in Energy Transfer in Green Photosynthetic Bacteria by R.J. van Dorssen, M. Vos and J. Amesz	531
Energy Transfer in Chloroflexus aurantiacus: Effects of Temperature and Anaerobic Conditions by B.P. Wittmershaus, D.C. Brune and R.E. Blankenship	543
Interpretation of Optical Spectra of Bacteriochlorophyll Antenna Complexes by R.M. Pearlstein	555
Time Resolution and Kinetics of "F680" at Low Temperatures in Spinach Chloroplasts by R. Knox and S. Lin	567
Picosecond Studies of Fluorescence and Absorbance Changes in Photosystem II Particles from Synechococcus Sp. by A.R. Holzwarth, G.H. Schatz and H. Brock	5 7 9
Analysis of Excitation Energy Transfer in Thylakoid Membranes by the Time-Resolved Fluorescence Spectra by M. Mimuro	589
V. CONCLUDING REMARKS	
Future Problems on Antenna Systems and Summary Remarks by E. Gantt	601
Author Index	605
Subject Index	609

COHERENT ANTI-STOKES RAMAN SPECTROSCOPY OF PHYCOBILISOMES, PHYCOCYANIN AND ALLOPHYCOCYANIN FROM MASTIGOCLADUS LAMINOSUS

- S. Schneider, F. Baumann, W. Steiner Institut für Physikalische und Theoretische Chemie der TU-München, Lichtenbergstr. 4, D-8046 Garching
- R. Fischer, S. Siebzehnrübl, H. Scheer Botanisches Institut der Ludwig-Maximilians-Universität Menzingerstr. 67, D-8000 München 19

Introduction

In order to provide a large geometrical and spectral crosssection for the absorption of light, red and blue-green algae
produce the so-called phycobilisomes (PBS), which contain
the chromoproteins phycoerythrin (or phycoerythrocyanin),
phycocyanin (PC) and allophycocyanin (APC). Although PC and
APC contain the same chromophore, phycocyanobilin, the spectral
properties of these biliproteins (tetrapyrrol chromophore
bound to apoprotein) are quite different. Their excitation
energies are modified according to their special function in
the light harvesting system (see e.g. 1,2) by chromophoreprotein interactions (14).

Resonance-enhanced Coherent Anti-Stokes Raman Spectroscopy (CARS) has proved to be a very suitable technique to produce vibrational spectra of highly fluorescing chromophores as e.g. light harvesting pigments (3,4,5). In this contribution CARS-spectra of room-temperature solutions of phycobilisomes and of phycocyanin and allophycocyanin trimers from Mastigo-cladus laminosus are presented and the implications to chromophore structure are discussed.

Experimental

Resonance-enhanced CARS spectra are obtained by focussing two laser beams with different wavelengths λ_{pump} (fixed) and λ_{stokes} (variable) in the sample, where by a non-linear effect the CARS beam is generated, which holds the equality $\widetilde{\nu}_{\text{CARS}} = \widetilde{\nu}_{\text{pump}} + (\widetilde{\nu}_{\text{pump}} - \widetilde{\nu}_{\text{stokes}})$ $\widetilde{\nu}_{\text{CARS}} > \widetilde{\nu}_{\text{pump}} > \widetilde{\nu}_{\text{stokes}}$, with $\widetilde{\nu} = 1/\lambda$ [cm⁻¹] A plot of the CARS intensity as function of $\widetilde{\nu}_{\text{pump}} - \widetilde{\nu}_{\text{stokes}}$ reveals a vibrational spectrum of the chromophore. As the CARS frequency is higher than either pump and Stokes frequency, no flourescence problems as in spontaneous Raman spectroscopy can arise. (For more experimental details see ref. 3).

Preparation

PBS were isolated according to the method published by Nies and Wehrmeyer (6), except that the pH of the phosphate buffer was 6 and the purification on the sucrose gradient was done twice. APC was prepared very similar to a procedure described by Füglistaller et. al. (7).

The aggregation state of PC and APC was determined by sedimentation runs according to Martin and Ames (8). Both biliproteins were found to be trimeric. Linker peptides were not present as proved by absorption spectra, sedimentation coefficients and SDS-gel electrophoresis.

Results

As both the fingerprint $(1100 - 1300 \text{ cm}^{-1})$ and the double bond stretching region $(1500 - 1750 \text{ cm}^{-1})$ have proved to be most suitable for the investigation of chromophore geometry by CARS (3,4,5,9) or Resonance Raman Spectroscopy (10,11), both regions are considered in the following.

The phycobilisome spectra (PBS) are dominated by the contribution of the constituent phycocyanin trimers (PC) and are therefore rather similar to the spectra of the latter. Most of the vibrational frequencies are reproduced within experimental accuracy, though with different intensities (especially between 1200 and 1300 cm⁻¹)(fig 1). At 1623 cm⁻¹ an additional weak peak is found in PBS, which is due to allophycocyanin (APC). A second interesting feature is that for the pronounced bands a smaller width is found in PBS than in PC. It possibly indicates a lower structural inhomogeneity in PBS due to higher aggregation and the presence of linker peptides.

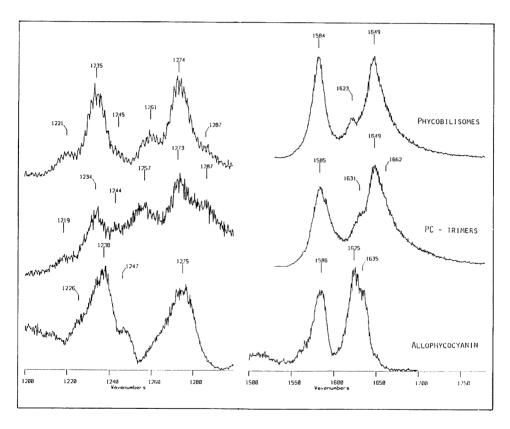


Fig. 1: Resonance-enhanced CARS spectra of phycobilisomes, phycocyanin trimers and allophycocyanin trimers from Mastigocladus laminosus. Pump wavelength 640 nm.

APC spectra are very different from PC spectra (see also ref. 10). The 1257 cm⁻¹ and 1287 cm⁻¹ bands observed in PC are absent in APC. In the double bond stretching region the dominant peak in PC is found at 1649 cm⁻¹ with shoulders at ≈ 1631 and ≈ 1662 cm⁻¹. In APC spectra, however, the dominant peak is found at 1625 cm⁻¹ with a strong shoulder at ≈ 1635 cm⁻¹ and a weak one at ≈ 1650 cm⁻¹.

Discussion

According to preliminary normal mode calculations using the coordinates provided by X-ray analysis (12,13), the bands found between 1200 and 1300 cm⁻¹ represent extensively mixed C-C stretch / C-H in plane bending modes and can presently not be interpreted in a straight-forward manner. The band around 1585 cm⁻¹ is related to C=C stretching vibrations in the ring B/C fragment. That this band exhibits nearly no change in frequency, most likely indicates a conservation of the geometry of this part of the chromophore.

The C=C double bonds of the methine bridges between ring A-B and ring C-D, on the other hand, should give rise to localized modes with frequencies between 1650 and 1700 cm⁻¹. The C=O stretch mixes with the C=C stretch in ring D to produce vibrational frequencies around 1630 cm⁻¹. The actual value of the calculated frequencies is found to be sensitive to structural changes.

From these theoretical results and the comparison of CARS spectra of model compounds (9) with the presented CARS spectra a significant difference in chromophore geometry and/or Π -electron distribution between PC and APC must be postulated. Interpretation of e.g. fluorescence decay data of APC should therefore not be based on structural information gained from PC.

Additional measurements on antenna pigments and a more elaborate normal mode analysis are in preparation.

Acknowledgement

Financial support by Deutsche Forschungsgemeinschaft (SFB 143) and Fonds der Chemie is gratefully acknowledged.

References

- (1) Gantt E. 1981. Phycobilisomes . Ann. Rev. Plant Physiol. 32, 327 - 347.
- (2) Scheer H. 1982. In: Light Reaction Path of Photosynthesis (F.K. Fong, ed.). Springer, Berlin. pp. 7 - 45.
- (3) Schneider S., F. Baumann, U. Klüter, 1987.
 Z. Naturforsch. 42c(11/12).
- (4) Schneider S., F. Baumann, P. Geiselhart, S. Siebzehnrübl, R. Fischer, H. Scheer, 1987. Proc. of the Sec. Europ. Conf. on the Spectr. of Biol. Mol., J.Wiley, Chichester.
- (5) Schneider S., F. Baumann, P. Geiselhart, H. Kayser, H. Scheer, 1987. Photochem. Photobiol., submitted.
- (6) Nies M. and W. Wehrmeyer, 1980. Planta <u>150</u>, 330 - 337.
- (7) Füglistaller P., H. Widmer, G. Frank and H. Zuber, 1981. Arch. Microbiol. <u>129</u>, 268 - 274.
- (8) Martin R.G. and B.N. Ames, 1961.
 J. Biol. Chem. 236, 1372 1379
- (9) Schneider S., P. Geiselhart, F. Baumann, H. Falk and W. Medinger, 1987. J. Biochem. Biophys., submitted.
- (10) Szalontai B., Z. Gombos, V. Csizmadia, 1985. Biochem. Biophys. Res. Com. 130, 358-363.
- (11) Szalontai B., Z. Gombos, V. Csizmadia and M. Lutz, 1987. Biochim. Biophys. Acta 893, 296-304.

- (12) Schirmer T., W. Bode and R. Huber, 1985. J. Mol. Biol. <u>184</u>, 257-277.
- (13) Schirmer T., W. Bode and R. Huber, 1987. J. Mol. Biol., <u>196</u>, 677-695.
- (14) Schneider S., C. Scharnagl, M. Duerring, T. Schirmer and W. Bode, 1987. Contribution in this volume.