1,184 research outputs found

    High-resolution Satellite Imaging of the 2004 Transit of Venus and Asymmetries in the Cytherean Atmosphere

    Get PDF
    This paper presents the only space-borne optical-imaging observations of the 2004 June 8 transit of Venus, the first such transit visible from Earth since AD 1882. The high-resolution, high-cadence satellite images we arranged from NASA's Transition Region and Coronal Explorer (TRACE) reveal the onset of visibility of Venus's atmosphere and give further information about the black-drop effect, whose causes we previously demonstrated from TRACE observations of a transit of Mercury. The atmosphere is gradually revealed before second contact and after third contact, resulting from the changing depth of atmospheric layers refracting the photospheric surface into the observer's direction. We use Venus Express observations to relate the atmospheric arcs seen during the transit to the atmospheric structure of Venus. Finally, we relate the transit images to current and future exoplanet observations, providing a sort of ground truth showing an analog in our solar system to effects observable only with light curves in other solar systems with the Kepler and CoRoT missions and ground-based exoplanet-transit observations

    A Quick Study of Science Return from Direct Imaging Exoplanet Missions: Detection and Characterization of Circumstellar Material with an AFTA or EXO-C/S CGI

    Full text link
    The capabilities of a high (~ 10^-9 resel^-1) contrast, narrow-field, coronagraphic instrument (CGI) on a space-based AFTA-C or probe-class EXO-C/S mission, conceived to study the diversity of exoplanets now known to exist into stellar habitable zones, are particularly and importantly germane to symbiotic studies of the systems of circumstellar (CS) material from which planets have emerged and interact with throughout their lifetimes. The small particle populations in "disks" of co-orbiting materials can trace the presence of planets through dynamical interactions that perturb the spatial distribution of the light-scattering debris, detectable at optical wavelengths and resolvable with an AFTA-C or EXO-S/C CGI. Herein we: (1) present the science case to study the formation, evolution, architectures, diversity, and properties of the material in the planet-hosting regions of nearby stars, (2) discuss how a CGI under current conception can uniquely inform and contribute to those investigations, (3) consider the applicability of CGI anticipated performance for CS debris system (CDS) studies, (4) investigate, through AFTA CGI image simulations, the anticipated interpretive fidelity and metrical results from specific, representative, zodiacal debris disk observations, (5) comment on specific observational modes and methods germane to, and augmenting, CDS observations, (6) present, in detail, the case for augmenting the currently conceived CGI two-band Nyquist sampled (or better) imaging capability with a full linear-Stokes imaging polarimeter of great benefit in characterizing the material properties of CS dust (and exoplanet atmospheres, discussed in other studies).Comment: Report of a quick study of science return from direct-imaging exoplanet missions, commissioned by the NASA Exoplanet Exploration Program on behalf of the WFIRST/AFTA Science Definition Team and the Exo-S and Exo-C Science and Technology Definition Team

    Generalizations of Bounds on the Index of Convergence to Weighted Digraphs

    Get PDF
    We study sequences of optimal walks of a growing length, in weighted digraphs, or equivalently, sequences of entries of max-algebraic matrix powers with growing exponents. It is known that these sequences are eventually periodic when the digraphs are strongly connected. The transient of such periodicity depends, in general, both on the size of digraph and on the magnitude of the weights. In this paper, we show that some bounds on the indices of periodicity of (unweighted) digraphs, such as the bounds of Wielandt, Dulmage-Mendelsohn, Schwarz, Kim and Gregory-Kirkland-Pullman, apply to the weights of optimal walks when one of their ends is a critical node.Comment: 17 pages, 3 figure

    The EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE)

    Full text link
    We present an overview of the EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE), selected by NASA for technology development and maturation. EXCEDE will study the formation, evolution and architectures of exoplanetary systems, and characterize circumstellar environments into stellar habitable zones. EXCEDE provides contrast-limited scattered-light detection sensitivities ~ 1000x greater than HST or JWST coronagraphs at a much smaller effective inner working angle (IWA), thus enabling the exploration and characterization of exoplanetary circumstellar disks in currently inaccessible domains. EXCEDE will utilize a laboratory demonstrated high-performance Phase Induced Amplitude Apodized Coronagraph (PIAA-C) integrated with a 70 cm diameter unobscured aperture visible light telescope. The EXCEDE PIAA-C will deliver star-to-disk augmented image contrasts of < 10E-8 and a 1.2 L/D IWA or 140 mas with a wavefront control system utilizing a 2000-element MEMS DM and fast steering mirror. EXCEDE will provide 120 mas spatial resolution at 0.4 microns with dust detection sensitivity to levels of a few tens of zodis with two-band imaging polarimetry. EXCEDE is a science-driven technology pathfinder that will advance our understanding of the formation and evolution of exoplanetary systems, placing our solar system in broader astrophysical context, and will demonstrate the high contrast technologies required for larger-scale follow-on and multi-wavelength investigations on the road to finding and characterizing exo-Earths in the years ahead

    A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope's Wide Field Camera 3 Near-IR Detector and Applications to Transiting Exoplanets and Brown Dwarfs

    Full text link
    The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy and brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits "to help the telescope reach a thermal equilibrium". We show that the ramp effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different datasets, and we provide best-fit values. Our model is tested with more than 120 orbits (40\sim40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit need no longer be discarded. Near IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model, if similar systematic profiles are observed.Comment: 16 pages, 13 figures, accepted to Astronomical Journa

    Experimental study of a low-order wavefront sensor for the high-contrast coronagraphic imager EXCEDE

    Full text link
    The mission EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), selected by NASA for technology development, is designed to study the formation, evolution and architectures of exoplanetary systems and characterize circumstellar environments into stellar habitable zones. It is composed of a 0.7 m telescope equipped with a Phase-Induced Amplitude Apodization Coronagraph (PIAA-C) and a 2000-element MEMS deformable mirror, capable of raw contrasts of 1e-6 at 1.2 lambda/D and 1e-7 above 2 lambda/D. One of the key challenges to achieve those contrasts is to remove low-order aberrations, using a Low-Order WaveFront Sensor (LOWFS). An experiment simulating the starlight suppression system is currently developed at NASA Ames Research Center, and includes a LOWFS controlling tip/tilt modes in real time at 500 Hz. The LOWFS allowed us to reduce the tip/tilt disturbances to 1e-3 lambda/D rms, enhancing the previous contrast by a decade, to 8e-7 between 1.2 and 2 lambda/D. A Linear Quadratic Gaussian (LQG) controller is currently implemented to improve even more that result by reducing residual vibrations. This testbed shows that a good knowledge of the low-order disturbances is a key asset for high contrast imaging, whether for real-time control or for post processing.Comment: 12 pages, 20 figures, proceeding of the SPIE conference Optics+Photonics, San Diego 201

    Supporting Treatment Adherence Readiness through Training (START) for patients with HIV on antiretroviral therapy: study protocol for a randomized controlled trial.

    Get PDF
    BackgroundFew HIV antiretroviral adherence interventions target patients before they start treatment, assess adherence readiness to determine the timing of treatment initiation, or tailor the amount of adherence support. The Supporting Treatment Adherence Readiness through Training (START) intervention, based on the information-motivation-behavioral skills model of behavior change, is designed to address these gaps with the inclusion of (1) brief pill-taking practice trials for enhancing pretreatment adherence counseling and providing a behavioral criterion for determining adherence readiness and the timing of treatment initiation and (2) a performance-driven dose regulation mechanism to tailor the amount of counseling to the individual needs of the patient and conserve resources. The primary aim of this randomized controlled trial is to examine the effects of START on antiretroviral adherence and HIV virologic suppression.Methods/designA sample of 240 patients will be randomized to receive START or usual care at one of two HIV clinics. Primary outcomes will be optimal dose-taking adherence (&gt;85 % prescribed doses taken), as measured with electronic monitoring caps, and undetectable HIV viral load. Secondary outcomes will include dose-timing adherence (&gt;85 % prescribed doses taken on time) and CD4 count. Primary endpoints will be month 6 (short-term effect) and month 24 (to test durability of effect), though electronic monitoring will be continuous and a fully battery of assessments will be administered every 6 months for 24 months.DiscussionIf efficacious and cost-effective, START will provide clinicians with a model for assessing patient adherence readiness and helping patients to achieve and sustain readiness and optimal treatment benefits.Trial registrationClinicalTrials.gov identifier NCT02329782 . Registered on 22 December 2014

    NICMOS Observations of the Pre-Main-Sequence Planetary Debris System HD 98800

    Get PDF
    Spectral energy distributions (SEDs) from 0.4 to 4.7 microns are presented for the two principal stellar components of HD~98800, A and B. The third major component, an extensive planetary debris system (PDS), emits > 20% of the luminosity of star B in a blackbody SED at 164 +/- 5K extending from mid-IR to millimeter-wavelengths. At 0.95 microns a preliminary upper limit of < 0.06 is obtained for the ratio of reflected light to the total from star B. This result limits the albedo of the PDS to < 0.3. Values are presented for the temperature, luminosity, and radius of each major systemic component. Remarkable similarities are found between the PDS and the interplanetary debris system around the Sun as it could have appeared a few million years after its formation.Comment: LaTeX, 9 pages with 1 encapsulated postscript figure and one specially formatted Table which is rendered as a postscript file and included as a figure. Accepted for publication in Astrophysical Journal Letter
    corecore