29 research outputs found

    Selectivity of linopirdine (DuP 996), a neurotransmitter release enhancer, in blocking voltage-dependent and calcium-activated potassium currents in hippocampal neurons.

    Get PDF
    ABSTRACT Linopirdine [DuP 996, 3,-1-phenylindolin-2-one], a putative cognition enhancing drug, increases acetylcholine release in rat brain tissue and improves performance in animal models of learning and memory. The mechanism whereby linopirdine enhances acetylcholine release has been proposed to involve inhibition of the M-type K ϩ current (I M ). Our study examines the selectivity of linopirdine for I M by determining its effects on other ionic currents present in rat hippocampal CA 1 neurons using patch clamp techniques. Linopirdine was found to block voltage-gated, calcium-activated and leak K ϩ currents in a dose-dependent manner. Of the seven currents measured, linopirdine was most selective for I M with an IC 50 of 2.4 Ϯ 0.4 M, followed by I C (measured as a medium afterhyperpolarization tail current, I mAHP ) with an IC 50 of 16.3 Ϯ 2.

    An ALMA Search for Substructure, Fragmentation, and Hidden Protostars in Starless Cores in Chamaeleon I

    Full text link
    We present an Atacama Large Millimeter/submillimeter Array (ALMA) 106 GHz (Band 3) continuum survey of the complete population of dense cores in the Chamaeleon I molecular cloud. We detect a total of 24 continuum sources in 19 different target fields. All previously known Class 0 and Class I protostars in Chamaeleon I are detected, whereas all of the 56 starless cores in our sample are undetected. We show that the Spitzer+Herschel census of protostars in Chamaeleon I is complete, with the rate at which protostellar cores have been misclassified as starless cores calculated as <1/56, or < 2%. We use synthetic observations to show that starless cores collapsing following the turbulent fragmentation scenario are detectable by our ALMA observations when their central densities exceed ~10^8 cm^-3, with the exact density dependent on the viewing geometry. Bonnor-Ebert spheres, on the other hand, remain undetected to central densities at least as high as 10^10 cm^-3. Our starless core non-detections are used to infer that either the star formation rate is declining in Chamaeleon I and most of the starless cores are not collapsing, matching the findings of previous studies, or that the evolution of starless cores are more accurately described by models that develop less substructure than predicted by the turbulent fragmentation scenario, such as Bonnor-Ebert spheres. We outline future work necessary to distinguish between these two possibilities.Comment: Accepted by Ap

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years

    Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches

    Full text link
    The following article appeared in Applied Physics Letters 103.16 (2013): 164105 and may be found at http://scitation.aip.org/content/aip/journal/apl/100/26/10.1063/1.4729825The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two 210 Pb sources producing ∼130 beta decays/hr. In ∼800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 × 10−5 at 90% C.L., corresponding to < 0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment.This work is supported in part by the National Science Foundation (Grant Nos. AST-9978911, NSF-0847342, PHY-1102795,NSF-1151869, PHY-0542066, PHY-0503729, PHY-0503629, PHY-0503641, PHY-0504224, PHY-0705052,PHY-0801708, PHY-0801712, PHY-0802575, PHY-0847342, PHY-0855299, PHY-0855525, and PHY-1205898), by the Department of Energy (Contract Nos. DE-AC03-76SF00098, DE-FG02-92ER40701, DE-FG02-94ER40823,DE-FG03-90ER40569, DE-FG03-91ER40618, and DESC0004022),by NSERC Canada (Grant Nos. SAPIN 341314 and SAPPJ 386399), and by MULTIDARK CSD2009-00064 and FPA2012-34694. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359, while SLAC is operated under Contract No. DE-AC02-76SF00515 with the United States Department of Energy

    Developmental roadmap for antimicrobial susceptibility testing systems

    Get PDF
    Antimicrobial susceptibility testing (AST) technologies help to accelerate the initiation of targeted antimicrobial therapy for patients with infections and could potentially extend the lifespan of current narrow-spectrum antimicrobials. Although conceptually new and rapid AST technologies have been described, including new phenotyping methods, digital imaging and genomic approaches, there is no single major, or broadly accepted, technological breakthrough that leads the field of rapid AST platform development. This might be owing to several barriers that prevent the timely development and implementation of novel and rapid AST platforms in health-care settings. In this Consensus Statement, we explore such barriers, which include the utility of new methods, the complex process of validating new technology against reference methods beyond the proof-of-concept phase, the legal and regulatory landscapes, costs, the uptake of new tools, reagent stability, optimization of target product profiles, difficulties conducting clinical trials and issues relating to quality and quality control, and present possible solutions

    Pharmacology of skeletal muscle gaba-gated chloride channels in the cockroach Periplaneta americana

    No full text
    The pharmacology of -aminobutyric acid (GABA)-gated chloride channels of the coxal levator (182c,d) muscle of the cockroach Periplaneta americana has been investigated and the data compared with similar findings for the cell body of the cockroach fast coxal depressor motor neurone (Df). Muscle GABA receptors resembled those of the motor neurone cell body in their sensitivity to picrotoxinin and insensitivity to bicuculline. However, muscle GABA receptors were insensitive to the neuronal GABA receptor agonists isoguvacine (10(-4) mol l-1) and 3-aminopropane sulphonic acid (10(-3 )mol l-1). The benzodiazepine flunitrazepam, which at 10(-6 )mol l-1 greatly enhances the amplitude of the motor neurone GABA-induced responses, failed to affect muscle responses to GABA when tested at the same and at a higher (10(-4 )mol l-1) concentration. The convulsant t-butylbicyclophosphorothionate was a weak antagonist of cockroach muscle GABA receptors, whereas several cyclodienes were much more effective antagonists. Thus, studies using a benzodiazepine and several convulsant antagonists reveal differences in the pharmacology of muscle and neuronal GABA receptors of the cockroach Periplaneta americana

    Effects of [3H]-BIDN, a novel bicyclic dinitrile radioligand for GABA-gated chloride channels of insects and vertebrates

    No full text
    1. The radiolabelled bicyclic dinitrile, [3H]-3,3-bis-trifluoromethyl-bicyclo[2.2.1]heptane-2,2-dicarboni- trile ([3H]-BIDN), exhibited, specific binding of high affinity to membranes of the southern corn rootworm (Diabrotica undecimpunctata howardi) and other insects. A variety of γ-aminobutyric acid (GABA) receptor convulsants, including the insecticides heptachlor (IC50, 35 ± 3 nM) and dieldrin (IC50, 93 ± 7 nM), displaced [3H]-BIDN from rootworm membranes. When tested at 100 μM, 1-(4-ethynylphenyl)-4-n-propyl-2,6,7-trioxabicyclo[2.2.2]octane (EBOB), 4-t-butyl-2,6,7-trioxa-1phosphabicyclo[2.2.2]octane-1-thione (TBPS), l-phenyl-4-t-butyl-2,6,7-trioxabicyclo[2.2.2]octane (TBOB) and picrotoxin failed to displace 50% of [3H]-BIDN binding to rootworm membranes indicating that the bicyclic dinitrile radioligand probes a site distinct from those identified by other convulsant radioligands. 2. Dissociation studies showed that dieldrin, ketoendrin, toxaphene, heptachlor epoxide and α and β endosulphan displace bound [3H]-BIDN from rootworm membranes by a competitive mechanism. 3. Rat brain membranes were also shown to possess a population of saturable, specific [3H]-BIDN binding sites, though of lower affinity than in rootworm and with a different pharmacological profile. Of the insecticidal GABAergic convulsants that displaced [3H]-BIDN from rootworm, cockroach (Periplaneta americana) and rat brain membranes, many were more effective in rootworm. 4. Functional GABA-gated chloride channels of rootworm nervous system and of cockroach nerve and muscle were blocked by BIDN, whereas cockroach neuronal GABA(B) receptors were unaffected. 5. Expression in Xenopus oocytes of either rat brain mRNA, or cDNA-derived RNA encoding a GABA receptor subunit (Rdl) that is expressed widely in the nervous system of Drosophila melanogaster resulted in functional, homo-oligomeric GABA receptors that were blocked by BIDN. Thus, BIDN probes a novel site on GABA-gated Cl- channels to which a number of insecticidally-active molecules bind
    corecore