69 research outputs found

    Learning robust policies for object manipulation with robot swarms

    Get PDF
    Swarm robotics investigates how a large population of robots with simple actuation and limited sensors can collectively solve complex tasks. One particular interesting application with robot swarms is autonomous object assembly. Such tasks have been solved successfully with robot swarms that are controlled by a human operator using a light source. In this paper, we present a method to solve such assembly tasks autonomously based on policy search methods. We split the assembly process in two subtasks: generating a high-level assembly plan and learning a low-level object movement policy. The assembly policy plans the trajectories for each object and the object movement policy controls the trajectory execution. Learning the object movement policy is challenging as it depends on the complex state of the swarm which consists of an individual state for each agent. To approach this problem, we introduce a representation of the swarm which is based on Hilbert space embeddings of distributions. This representation is invariant to the number of agents in the swarm as well as to the allocation of an agent to its position in the swarm. These invariances make the learned policy robust to changes in the swarm and also reduce the search space for the policy search method significantly. We show that the resulting system is able to solve assembly tasks with varying object shapes in multiple simulation scenarios and evaluate the robustness of our representation to changes in the swarm size. Furthermore, we demonstrate that the policies learned in simulation are robust enough to be transferred to real robots

    Robust learning of object assembly tasks with an invariant representation of robot swarms

    Get PDF
    — Swarm robotics investigates how a large population of robots with simple actuation and limited sensors can collectively solve complex tasks. One particular interesting application with robot swarms is autonomous object assembly. Such tasks have been solved successfully with robot swarms that are controlled by a human operator using a light source. In this paper, we present a method to solve such assembly tasks autonomously based on policy search methods. We split the assembly process in two subtasks: generating a high-level assembly plan and learning a low-level object movement policy. The assembly policy plans the trajectories for each object and the object movement policy controls the trajectory execution. Learning the object movement policy is challenging as it depends on the complex state of the swarm which consists of an individual state for each agent. To approach this problem, we introduce a representation of the swarm which is based on Hilbert space embeddings of distributions. This representation is invariant to the number of agents in the swarm as well as to the allocation of an agent to its position in the swarm. These invariances make the learned policy robust to changes in the swarm and also reduce the search space for the policy search method significantly. We show that the resulting system is able to solve assembly tasks with varying object shapes in multiple simulation scenarios and evaluate the robustness of our representation to changes in the swarm size. Furthermore, we demonstrate that the policies learned in simulation are robust enough to be transferred to real robots

    Characterization of Turing diffusion-driven instability on evolving domains

    Get PDF
    In this paper we establish a general theoretical framework for Turing diffusion-driven instability for reaction-diffusion systems on time-dependent evolving domains. The main result is that Turing diffusion-driven instability for reaction-diffusion systems on evolving domains is characterised by Lyapunov exponents of the evolution family associated with the linearised system (obtained by linearising the original system along a spatially independent solution). This framework allows for the inclusion of the analysis of the long-time behavior of the solutions of reaction-diffusion systems. Applications to two special types of evolving domains are considered: (i) time-dependent domains which evolve to a final limiting fixed domain and (ii) time-dependent domains which are eventually time periodic. Reaction-diffusion systems have been widely proposed as plausible mechanisms for pattern formation in morphogenesis

    Aerosol and Surface Contamination of SARS-CoV-2 Observed in Quarantine and Isolation Care

    Get PDF
    The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China in late 2019, and its resulting coronavirus disease, COVID-19, was declared a pandemic by the World Health Organization on March 11, 2020. The rapid global spread of COVID-19 represents perhaps the most significant public health emergency in a century. As the pandemic progressed, a continued paucity of evidence on routes of SARS-CoV-2 transmission has resulted in shifting infection prevention and control guidelines between classically-defined airborne and droplet precautions. During the initial isolation of 13 individuals with COVID-19 at the University of Nebraska Medical Center, we collected air and surface samples to examine viral shedding from isolated individuals. We detected viral contamination among all samples, supporting the use of airborne isolation precautions when caring for COVID-19 patients

    Infectious complications after deployment trauma: Following wounded US military personnel into Veterans Affairs care

    Get PDF
    BACKGROUND: Infectious complications related to deployment trauma significantly contribute to the morbidity and mortality of wounded service members. The Trauma Infectious Disease Outcomes Study (TIDOS) collects data on US military personnel injured in Iraq and Afghanistan in an observational cohort study of infectious complications. Patients enrolled in TIDOS may also consent to follow-up through the Department of Veterans Affairs (VA). We present data from the first 337 TIDOS enrollees to receive VA healthcare. METHODS: Data were collected from the Department of Defense (DoD) Trauma Registry, TIDOS infectious disease module, DoD and VA electronic medical records, and telephone interview. Cox proportional hazard analysis was performed to identify predictors of post-discharge infections related to deployment trauma. RESULTS: Among the first 337 TIDOS enrollees who entered VA healthcare, 111 (33%) had 244 trauma-related infections during their initial trauma hospitalization (2.1 infections per 100 person-days). Following initial discharge, 127 (38%) enrollees had 239 trauma-related infections (170 during DoD follow-up and 69 during VA time). Skin and soft-tissue infections and osteomyelitis were predominant during and after the initial trauma hospitalization. In a multivariate model, a shorter time to development of a new infection following discharge was independently associated with injury severity score ≥10 and occurrence of ≥1 inpatient infection during initial trauma hospitalization. CONCLUSIONS: Incident infections related to deployment trauma continue well after initial hospital discharge and into VA healthcare. Overall, 38% of enrolled patients developed a new trauma-related infection after their initial hospital discharge, with 29% occurring after the patient left military service

    Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signaling, cell stress and epithelial-to-mesenchymal transition. Mapping mutations and copy number events distinguished tumor populations from normal and transitional cells, including acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Pathology-assisted deconvolution of spatial transcriptomic data identified tumor and transitional subpopulations with distinct histological features. We showed coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin in tumor cells. Chemo-resistant samples contain a threefold enrichment of inflammatory cancer-associated fibroblasts that upregulate metallothioneins. Our study reveals a deeper understanding of the intricate substructure of pancreatic ductal adenocarcinoma tumors that could help improve therapy for patients with this disease

    Education, implementation, and teams : 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with treatment recommendations

    Get PDF
    For this 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations, the Education, Implementation, and Teams Task Force applied the population, intervention, comparator, outcome, study design, time frame format and performed 15 systematic reviews, applying the Grading of Recommendations, Assessment, Development, and Evaluation guidance. Furthermore, 4 scoping reviews and 7 evidence updates assessed any new evidence to determine if a change in any existing treatment recommendation was required. The topics covered included training for the treatment of opioid overdose; basic life support, including automated external defibrillator training; measuring implementation and performance in communities, and cardiac arrest centers; advanced life support training, including team and leadership training and rapid response teams; measuring cardiopulmonary resuscitation performance, feedback devices, and debriefing; and the use of social media to improve cardiopulmonary resuscitation application
    corecore