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E-2-hexenal specifically induced a change in the redox status 
in the mitochondria. We did not see a difference in the redox 
status in her2 compared to wild-type Arabidopsis. Still, the 
mitochondrial redox status did not change with Z-3-hexenol, 
another abundant GLV. These results indicate that HER2 is 
involved in transducing the perception of E-2-hexenal, which 
changes the redox status of the mitochondria.

Keywords  Arabidopsis · E-2-hexenal · Mitochondria · 
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Introduction

Green leaf volatiles are C6 volatiles, which are produced by 
plants in response to herbivory, wounding and environmen-
tal stress (Croft et al. 1993; Fall et al. 1999; Gouinguené and 
Turlings 2002; Heiden et al. 2003; Shiojiri et al. 2000, 2006; 
Turlings et al. 1995). Biosynthesis of these volatiles occurs 
mainly from α-linolenic acid by the sequential action of two 
enzymes, a lipoxygenase (LOX), which dioxygenates at the 
C13 position, and hydroperoxide lyase (HPL; Hatanaka 1993; 
Matsui 2006; Matsui et al. 2000; Mochizuki et al. 2016), fol-
lowed by the activity of an aldehyde dehydrogenase (ADH), 
an isomerase (Kunishima et al. 2016) and acetyltransferase 
(D’Auria et al. 2007) in order to produce the GLV bouquet 
of C6-aldehydes, alcohols and their esters.

Plants have the ability to sense GLVs although the mecha-
nism of the perception remains unknown (Matsui 2016; Scala 
et al. 2013). Since plants respond to GLVs with transcriptional 
changes related to wound and herbivore-induced defenses 
(Scala et al. 2013), GLVs are now also considered as damaged 
associated molecular patterns or DAMPs, probably carrying 
specific information about the attacker (Duran-Flores and Heil 
2016). Many responses in plants to GLVs have been described 
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(see e.g. (Scala et al. 2013)) and several of the early signaling 
events and downstream molecular players have been eluci-
dated. These include plasma membrane depolarization (Zebelo 
et al. 2012), increases in cytosolic Calcium (Asai et al. 2009; 
Zebelo et al. 2012) and increased transcript levels of several 
genes involved in Calcium signaling, including Calmodulin, 
a Ca2+-binding protein (Engelberth et al. 2013). E-2-hexenal 
has been shown to induce abiotic-related transcription factors 
(Yamauchi et al. 2015) as well as two WRKY transcription 
factors (Mirabella et al. 2015). WRKY6 negatively regulates 
glutamate decarboxylase that converts glutamate to γ-amino 
butyric acid (GABA), a metabolite implicated in the respon-
siveness to E-2-hexenal (Mirabella et al. 2008). In the monocot 
maize, GLVs can, beside changing the transcriptome (Engel-
berth et al. 2013), induce the production of jasmonic acid 
(Engelberth et al. 2004). Plants have also developed a reper-
toire of enzymatic reactions to modify GLVs upon perception 
(Matsui 2016), reducing them (Matsui et al. 2012), converting 
them to glycosides (Sugimoto et al. 2014, 2015) or glutathione 
conjugates (Davoine et al. 2006; Mirabella et al. 2008).

We set out to find additional molecular players that medi-
ate responses to GLVs using forward genetics. To reduce the 
complexity of this study we decided to focus on E-2-hexenal, 
which has an α,β−unsatured carbonyl moiety with a high reac-
tivity towards nucleophils, such as the thiol- or amino-group 
(Esterbauer et al. 1991; Farmer and Davoine 2007), giving 
it the denomination as a reactive electrophile species (RES) 
(Farmer and Davoine 2007; Farmer and Mueller 2013; Park 
et al. 2010). Previously we have shown that the roots of Arabi-
dopsis seedlings, when exposed to sub-micromolar concentra-
tions of E-2-hexenal, stop growing, similar as with jasmonic 
acid (Staswick et al. 1992), and that this response is, among 
the GLVs, specific for E-2-hexenal. With this readout we could 
identify mutants of which the roots grew faster upon E-2-hex-
enal exposure than the wildtype, which we called E-2-hexenal 
response (her) mutants (Mirabella et al. 2008). This lead to 
the characterization of the her1 mutant and the discovery of 
the role of GABA downstream of E-2-hexenal. We have now 
used map-based cloning to position the mutation in her2 to 
the At5g63620 locus. HER2 is predicted to encode an oxi-
doreductase and since RES can influence the redox status of 
cells (Farmer and Davoine 2007; Mueller and Berger 2009) 
we studied the effect of E-2-hexenal on the redox status of the 
root cells. Our results put HER2 as a new molecular player in 
the signaling events upon perception of E-2-hexenal and show 
that E-2-hexenal changes the redox status of the mitochondria.

Materials and methods

Mutant screen and mapping

The Arabidopsis mutant seed population was provided 
by Dr G-J. de Boer (enzazaden.nl). In brief, Arabidopsis 
seeds, ecotype Col-0, were mutagenized by soaking about 
50,000 seeds in 0.2% (v/v) EMS, as previously described 
by Weigel and Glazebrook (2006). M2 seeds were collected 
from pools of 1000 plants. For the mutant screen, approxi-
mately 35,000 M2 seeds were screened from 12 independ-
ent pools as described previously (Mirabella et al. 2008). 
The her2 mutant was outcrossed to wildtype ecotype Ler. 
F1 plants were allowed to self-fertilize, and the F2 progeny 
was screened for sustained root growth in the presence of 
aerial 0.3 µM E-2-hexenal. Mapping was essentially done as 
previously described (Mirabella et al. 2008), with different 
markers (see Fig. S1 in Supplementary Material).

Plant lines

SALK-generated T-DNA insertion lines 072101 and 079558 
were obtained from the Arabidopsis Biological Resource 
Center (ABRC, Ohio State University, Columbus, OH, 
USA (Alonso et al. 2003). For HER2 overexpressing lines 
(HER2:OE), the HER2 cDNA was cloned in pGreen0229 
under control of the 35S promoter. Col-0 plants were trans-
formed with Agrobacterium tumefaciens GV3101 carry-
ing this plasmid and primary transformants were selected 
on BASTA (50 µg ml−1), and in the next generations till 
homozygous lines were obtained. For redox sensitive 
GFP lines, Col-0 and her2 plants were transformed with 
A. tumefaciens GV3101 carrying the plasmid pBinCM-
SHMT-roGFP2-GRX1 for expression of roGFP2-GRX1 
in mitochondria or pBinCM-roGFP2-GRX1 for cytosolic 
expression both under control of the Ubi10 promoter (Jiang 
et al. 2006; Meyer and Brach 2009; Meyer et al. 2007). 
Selection was done on kanamycin (15 mg ml−1) till homozy-
gous lines were obtained.

Quantitative RT‑PCR

For analysis of transcript levels, total RNA was isolated 
using Trizol from ten different plants, in three independ-
ent experiments and treated with TurBo DNAse (Ambion®, 
http://www.lifetechnologies.com/nl/en/home/brands/
ambion.html) to remove DNA. cDNA was synthesized from 
1 µg of total RNA using M-MuLV reverse transcriptase (Fer-
mentas, thermoscientificbio.com/fermentas), as described 
by the manufacturer, in a 20-µl reaction that was diluted to 
50 µl prior to using it for the real-time PCR. This was per-
formed in a 20-µl volume containing 2 µl of cDNA, 0.4 pmol 
of specific primer sets for each gene and 10 µl of Taq™ 

http://www.lifetechnologies.com/nl/en/home/brands/ambion.html
http://www.lifetechnologies.com/nl/en/home/brands/ambion.html
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SYBR Green Supermix with ROX (Bio-Rad, bio-rad.com). 
PCR conditions were as follows: 95 ℃ for 2 min 30 s (first 
cycle), 95 °C for 15 s and 60 °C for 30 s (40 cycles). To 
ensure amplification of a single product during the qRT-PCR 
reactions, a dissociation protocol was performed in which 
samples were slowly heated from 55 to 95 °C. qRT-PCR 
was performed using the ABI Prism 7000 real-time PCR 
detection system (Applied Biosystems, appliedbiosystems.
com) and the data were collected using software (ABI 7000 
SDS version 1) provided by the supplier. Transcript levels 
were normalized to the transcript levels of the SAND gene 
(At2g28390; (Hong et al. 2010)) and quantification was per-
formed as described by (Pfaffl 2001). Primer sequences for 
HER2 were qHER2fw TGG​AGG​AAG​AGC​AAG​ACA​GG, 
qHER2rev GAG​ACT​GCG​TTT​GTGA GATTG.

Volatile treatments

Seeds were surface sterilized and planted into horizontally 
slit cuts in 1.5% agar plates containing half-strength MS 
salts, pH 5.8. In this way, roots emerging from the germi-
nated seeds grew on the surface and did not penetrate in the 
agar. The plates were chilled for 2 days at 4 °C before being 
placed vertically in an environmental growth chamber with 
a light (100 µE sec−1 m−2)/dark cycle of 16/8 h at 21 °C and 
70% relative humidity. Plants were grown for 4 days under 
these conditions before being exposed to volatiles. For the 
volatile treatment, two Petri dishes, with the lid removed, 
were placed vertically into airtight glass desiccator (22 l). 
Technical replicates were done in different desiccators. 
E-2-hexenal was diluted in methanol, and 50 µl of the diluted 
solutions were applied to a sterile cotton swab, placed in an 
50 ml Erlenmeyer flask, between the plates in the desicca-
tors (Mirabella et al. 2015). For the control treatment only 
methanol (MeOH) was applied. For instance, for a concen-
tration of 0.3 μM aerial E-2-hexenal 6.6 μmol was added to 
the cotton swap in a desiccator of 22 l, but only 7.3% of the 
E-2-hexenal could be recovered from the desiccator (Mira-
bella et al. 2015). Plates were incubated in the desiccators 
with the volatiles for 24 h for root length measurement, and 
were subsequently removed and placed vertically under the 
growth conditions described above, and root growth was 
measured 3 days later. For each treatment, the root length 
of at least ten seedlings for each plant line, distributed over 
eight plates, was determined with ImageJ software (http://
rsbweb.nih.gov/ij/). All experiments were done at least three 
times. For FLIM measurements plants were treated with 
0.13 µM E-2-hexenal, Z-3-hexenol or methanol as control 
for 1 h. For each measurement at least eight seedlings per 
plant line, distributed over four different plates were used. 
All experiments were done at least three times.

Confocal and fluorescence lifetime imaging microscopy 
(FLIM) measurements

Protoplast transfection was done as reported in (Vermeer 
et al. 2004) and confocal microscopy was performed as pub-
lished by (Vermeer et al. 2009). Briefly, leaf protoplasts of an 
Arabidopsis line expressing a mitochondrion localized GFP 
(Nelson et al. 2007) were transfected with a plasmid express-
ing a fusion between the predicted signal peptide of HER2 
(the first 55 aa) and mCherry (pMON999-35S-SP-mCherry).

Fluorescence lifetime imaging was performed using the 
wide-field frequency domain approach on a home-build 
instrument (van Munster and Gadella 2005) using a RF-
modulated image intensifier (Lambert Instruments II18MD) 
coupled to a CCD camera (Photometrics HQ) as detector. 
A 40× objective (Plan NeoFluar NA 1.3 oil) was used for 
all measurements. The modulation frequency was set to 
75.1 MHz. Eighteen phase images with an exposure time 
of 20–80 ms were acquired in a random recording order to 
minimize artifacts due to photobleaching (van Munster and 
Gadella 2004). An argon-ion laser was used for excitation at 
488 nm, passed onto the sample by a 495 nm dichroic mir-
ror and emission light was filtered by a 515/30 nm emission 
filter. For the control experiment, of each plant line, at least 
eight (4 day-old) seedlings were treated with 20 mM H2O2 
for 30 min (Wierer et al. 2012).

Results

The mutation in her2 maps to At5g63620

In a previous paper (Mirabella et al. 2008) we described the 
isolation of different hexenal response (her) mutants and we 
showed that the her1 mutation was in the GABA transami-
nase gene (At3g22200). Here we describe the mapping of 
the mutation in her2. The her2 mutant has a similar phe-
notype as the her1 mutant (Mirabella et al. 2008), i.e. the 
growth of the root of young seedlings is less inhibited by 
0.3 μM aerial E-2-hexenal than the wild type Arabidopsis 
ecotype Col-0 of which the root stops growing (Fig. 1a).

Since the trait was segregating as single recessive muta-
tion, we used positional cloning to map the her2 locus as we 
did for her1 (Mirabella et al. 2008), based on the methods 
developed by Lukowitz et al. (2000) and Jander et al. (2002). 
We created an F2 population from a cross between Ler and 
her2 and phenotyped 512 F2 plants. Bulk segregant analysis 
on 50 plants, with the wt or her2 phenotype, using the mark-
ers developed by (Lukowitz et al. 2000) put the mutation 
on the lower arm of chromosome 5 (ciw9 marker, data not 
shown). To further delimit the position of the her2 locus, 
all 512 phenotyped F2 plants were genotyped with mark-
ers in this area (see Table S1 in Supplementary Material). 

http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/
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For markers Mbk5c7 and Mbk5c8, spanning a region of 
25 kbp, only three recombinants were identified (see Fig. 
S1 in Supplementary Material). This interval contains seven 
genes (Fig. 1b) that were subsequently all sequenced. Only 
At5g63620 had a point mutation in an exon compared to the 
published Col-0 genomic sequence (http://www.arabidopsis.
org). This point mutation leads to a single amino acid sub-
stitution in the predicted At5g63620 protein, from serine 
(S223) to phenylalanine (F223) (Fig. 1c). According to the 
conserved domain detection by NCBI (http://ncbi.nlm.nih.
gov), amino acid 223 is in a Zn-binding site. The aromatic 
group of Phenylalanine might thus lead to steric hinder and 
possibly influences Zn binding.

In order to corroborate the correlation between the 
genotype of her2, i.e. the point mutation in At5g63620, 
and its phenotype, we tested two SALK lines with T-DNA 
insertions in At5g63620 for their response to E-2-hexenal. 
SALK line 072101 has a T-DNA insertion in the fifth exon 
and SALK line 079558 in the first exon of At5g63620 
(Fig. 1c). The extent of resistance to E-2-hexenal-induced 
root growth inhibition shown in the her2 mutant is also 
displayed in the SALK_072101 mutant (Fig. 1a), even to 
an higher extent than in her2, whereas the SALK_079558 
mutant had a similar response as Col-0. The phenotype 
of the SALK lines correlated with the transcript levels of 
At5g63620 in these lines: SALK_072101 had significantly 
reduced transcript levels but SALK_079558 did not (see 
Fig. S2 in supplementary Material). We thus concluded 
that the mutation in At5g63620 indeed caused the pheno-
type of her2 and refer further to this locus as HER2.

HER2 overexpression leads to higher sensitivity 
to E‑2‑hexenal

In order to corroborate the role of At5g63620 (HER2) 
in the E-2-hexenal response further, we overexpressed 
HER2 under control of the 35S promoter in Arabidopsis. 
We characterized two independent lines that had higher 
HER2 expression, with somewhat higher transcript lev-
els in line 4b4 than in 5Ia3 (Fig. 2). Four day-old seed-
lings of these two independent HER2 overexpressing 
lines (HER2:OE) were subsequently exposed for 24 h to 
E-2-hexenal. We had to use two different E-2-hexenal con-
centrations, 0.2 and 0.15 µM, since the two independent 
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Fig. 1   Positional mapping of her2 location and response to E-2-hex-
enal. a Three-day-old seedlings from SALK lines 072101 and 
079558, her2 and wild-type Col-0 were exposed for 24 h to MeOH 
(as a control as E-2-hexenal is dissolved in MeOH) or to 0.3 µM 
aerial E-2-hexenal. Root growth was measured 3 days after the treat-
ment. Values are the mean root length of at least 15 plants, distributed 
over three plates (± SEM). Different letters above the bars indicate 
significant differences at a level of P ≤ 0.05, after applying ANOVA 
followed by a LSD posthoc test. b Representation of chromosome 5 
between nucleotides 25,464,351 and 25,487,847. Arrows denote the 
position of the genes present in this area. The red box indicates the 
At5g63620 locus. c Representation of the HER2 genomic region. 
Exons (white boxes) introns (black boxes) and putative promoter 
(grey arched box) are shown. Black triangles indicate T-DNA inser-
tions for the Col-0 SALK_072101 (5th Exon) and SALK_079558 (1st 
Exon) lines. Amino acid 223 (S, serine) is mutated to a phenylalanine 
(F) in her2 

Fig. 2   HER2 transcript levels in HER2 overexpressing plants. HER2 
transcript levels were measured by qRT-PCR in two independent 
overexpressing lines (HER2:OE), 4b4 and 5Ia3, and normalized for 
SAND transcript levels. The mean (and min/max) of two independ-
ent experiments is presented with the value of the wildtype (wt) set 
to one

http://www.arabidopsis.org
http://www.arabidopsis.org
http://ncbi.nlm.nih.gov
http://ncbi.nlm.nih.gov


403Plant Mol Biol (2017) 95:399–409	

1 3

HER2 overexpression lines were not only more responsive 
to the aldehyde but also responded differently. Indeed line 
4b4 showed a root growth inhibition phenotype at 0.2 µM 
while the line 5Ia3 did at a lower dose (0.15 µM). In both 
cases the HER2 overexpression lines showed a stronger 
growth inhibition of the roots than the wt (Fig. 3a, b). 
This confirms the role of HER2 in the responsiveness to 
E-2-hexenal.

HER2 protein localizes in the mitochondria

The HER2 protein is predicted to be localized in the mito-
chondrion (http://www.arabidopsis.org). To determine the 
subcellular localization of HER2 in planta we made a con-
struct of the putative signal peptide of HER2 (Wolf PSort, 
http://www.genscript.com/psort/wolf_psort.html), com-
prising the first 55 amino acids, fused to mCherry driven 
by the 35S promoter. We transfected Arabidopsis meso-
phyll protoplasts with this construct (Fig. 4a) expressing 

a mitochondrial reporter, 35S-mito-GFP (Fig. 4b) (Nelson 
et al. 2007). The obtained fluorescent signals overlapped 
(Fig. 4d) indicating that HER2 localizes indeed in the 
mitochondria. The chlorophyll autofluorescence (blue) is 
also shown (Fig. 4c) to illustrate the chloroplasts.

Phylogenetic analysis of HER2

The TAIR database (http://www.arabidopsis.org) predicts 
that the At5g63620 gene encodes a GroES-like zinc-
binding alcohol dehydrogenase family protein. Alcohol 
dehydrogenases (ADH, alcohol:NAD + oxidoreductase, 
EC 1.1.1.1) are Zn-binding enzymes that act as dimers 
and use NAD(P) as co-factor to convert short linear alco-
hols in their related aldehydes (e.g. ethanol in acetalde-
hyde) or NAD(P)H for the reciprocal reaction. ADHs are 
members of the medium-length dehydrogenase/reductase 
(MDR) protein superfamily. There are many plant proteins 
at NCBI database (http://www.ncbi.nlm.nih.gov) that are 
highly similar to HER2, but although putatively annotated, 
their enzymatic functions have not been determined yet. 
Among the subject sequences with highest similarity with 
HER2 at UniProt (http://ebi.ac.uk/uniprot), we found only 
one protein with a confirmed activity. This is a succinic 
semi aldehyde (SSA) dehydrogenase acetylating enzyme 
(A4YGN0, SSADH-Acetylating, EC 1.2.1.76) of a thermo-
acidophile bacterium, Metallosphaera sedula (Berg et al. 
2007), which has 42% aa identity with HER2 (Fig. S3). 
The reaction catalyzed by this enzyme is as follows: 

Fig. 3   Root growth of 35S-HER2 (4b4 and 5Ia3) and wildtype (wt) 
seedlings after 24 h treatment with MeOH, or with 0.15 µM (a and 
c) or 0.2  µM (b) aerial E-2-hexenal. The measurements were made 
4  days after treatment on at least 30 seedlings (n = 2). Bars repre-
sent the means (± SEM). Bars annotated with different letters indi-
cate significant differences between MeOH or E-2-hexenal treatment 
(P < 0.05, ANOVA followed by least significant difference (LSD) post 
hoc test). c Root growth of wild-type (Col-0) and HER2 overexpres-
sion (line 5la3) seedlings. The images were taken 4 days after treat-
ment

Fig. 4   HER2 is localized in the mitochondria. Confocal image of 
transfected protoplast showing: a HER2 signal peptide-mCherry, b 
Mito-GFP reporter, c chlorophyll autofluorescence and d overlay

http://www.arabidopsis.org
http://www.genscript.com/psort/wolf_psort.html
http://www.arabidopsis.org
http://www.ncbi.nlm.nih.gov
http://ebi.ac.uk/uniprot
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Succinate semialdehyde (SSA) + Coenzyme A + NADP+ 
↔ succinyl-CoA + NADPH. However, the SSADH-Acet-
ylating activity has not been reported yet in plants, accord-
ingly to Plant Metabolic Network (PMN, http://www.
plantcyc.org) and MetaCyc (http://www.metacyc.org).

Given the predicted mitochondrial localization, the 42% 
sequence similarity with an enzyme that uses SSA as a 
substrate and the annotation as an ADH, we decided to use 
the ADH and SSADH amino acid sequences of A. thaliana 
(Bouche et al. 2003; Kirch et al. 2004) to calculate a phy-
logenetic tree (Fig. 5), in order to gain information about 
the putative function of HER2. We also included AtGLYR1 
and AtGLYR2 because they are cytosolic and mitochondrial 
oxidoreductases, respectively, involved in the conversion of 
SSA to γ-hydroxybutyrate (GHB) (Allan et al. 2008), plus 
the amino acid sequences of the top six hits of a BLAST 
analysis of HER2 against the Arabidopsis protein database 
(http://www.arabidopsis.org). The phylogenetic tree shows 
that the HER2 protein and the SSADH-Acetylating protein 
of M. sedula form a separate subcluster (Fig. 5) thus pro-
viding little additional evidence about the putative enzy-
matic activity of HER2. Nevertheless, we produced purified 
soluble recombinant HER2 protein with a N-terminal GST 
tag (see Fig. S4 in Supplementary Material) and assayed 
for SSADH-Acetylating activity (and the reverse reaction) 
that we could not detect, nor any succinate dehydrogenase 
(SSADH) activity. Furthermore we tested whether the 
recombinant GST-HER2 protein could use E-2-hexenal or 

Z-3-hexenal as a substrate. This was not the case, unlike the 
ADH from yeast that was taken along as a control (Fig. S5).

Since the similarity with the SSADH-acetylating enzyme 
indicates that SSA, an intermediate in the GABA shunt 
(Ludewig et al. 2008), is a putative substrate of HER2, we 
investigated whether GABA, the precursor of SSA, accumu-
lated in the her2 mutant. Still, the levels of GABA in her2 
under unstressed conditions are similarly low as in the wt, 
while GABA levels in the GABA-transaminase mutant her1, 
which is unable to make SSA from GABA, are much higher 
as we previously published (Mirabella et al. 2008) (see Fig. 
S6 in Supplementary Material). This shows that the her2 
mutant does not accumulate GABA unlike the her1 mutant. 
Since the her2 phenotype in soil is not dwarfed like the 
ssadh mutant which accumulates SSA and GHB (Ludewig 
et al. 2008), we did not measure those two metabolites.

E‑2‑hexenal changes the redox status 
of the mitochondria

Since HER2 is predicted to be a mitochondrial oxidore-
ductase, thus putatively involved in redox reactions, we 
set out to determine whether HER2 is important for condi-
tions that involve redox changes. To do so we used a redox-
sensitive GFP2 (roGFP2; (Meyer et al. 2007)) to monitor 
the redox state of the cell and in particular, we decided to 
check both mitochondria and cytosol. We thus transformed 
wildtype Col-0 and her2 with constructs driving constitutive 

Fig. 5   Neighbor joining phylogenetic tree of amino acid sequences 
of the A. thaliana ADH family, AtGLYR1 and AtGLYR2, HER2 
(blue) and SSADH-Acetylating A4YGN0 from M. sedula (green). 
ADH, BADH, betaine-aldehyde dehydrogenase; GAPN, non-phos-
phorylating glyceraldehyde-3-phosphate dehydrogenase; MMSA, 
methylmalonyl semialdehyde dehydrogenase; P5CDH, D1-pyrro-
line-5-carboxylate dehydrogenase; SSADH, succinic semialdehyde 

dehydrogenase; GLYR, glyoxylate reductase; SSADH-AC, succinic 
semialdehyde dehydrogenase acetylating. At1g64170, At1g32780, 
At1g77120, At5g43940, At4g22110 and At5g42250 are the six best 
hits with HER2 as a query against the Arabidopsis protein database 
(http://www.arabidopsis.org). The tree was generated with CLC Main 
Workbench 6.8.4 (CLC Bio, clcbio.com), using the neighbor joining 
algorithm with 100 bootstrap simulations

http://www.plantcyc.org
http://www.plantcyc.org
http://www.metacyc.org
http://www.arabidopsis.org
http://www.arabidopsis.org
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expression of roGFP2 (Ubiquitin10 promoter) and target-
ing roGFP2 either to the cytosol or mitochondria. In order 
to confirm the reliability of roGFP2 reporter we sought to 
measure the fluorescence lifetime in 4 day-old seedlings 
treated for 30 min with 20 mM hydrogen peroxide (H2O2) 
(Wierer et al. 2012). The treatment was performed on seed-
lings with the reporter expressed in the cytosol or in the 
mitochondria.

The fluorescence lifetime τ(φ) was measured in the root 
tip of seedlings as an indication of the oxidation state of the 
redox sensitive reporter, roGFP2. This reporter has disul-
phide bonds that react to the redox state of the cell, which 
results in an increase of the τ(φ) in an augmented oxidized 
environment (Meyer et al. 2007; Wierer et al. 2012). Fig-
ure 6a shows that τ(φ) of the reporter in H2O2 treated seed-
lings is statistically significantly higher (P < 0.01, t-test) than 
τ(φ) of untreated seedlings for both the mitochondrial and 
cytosolic compartments as has been reported for an oxida-
tive treatment (Wierer et al. 2012). No differences were 
found between her2 and wt. We then tested methanol since 
we dissolve GLVs in it. As it is shown in Fig. 6b, MeOH 
has no effect on τ(φ) in all plant lines. To assess further if 
the her2 mutation has an effect on the cellular redox state 
during GLV perception, we treated the seedlings for 1 h with 
two different GLVs, 0.3 µM aerial E-2-hexenal (Fig. 6c) or 
0.3 µM aerial Z-3-hexenol (Fig. 6d) because this is one of 
the most abundantly produced GLVs by Arabidopsis (Matsui 
et al. 2012) or MeOH as negative control.

As shown in Fig. 6d Z-3-hexenol had no effect on the 
τ(φ) of the roGFP2mit expressed in her2 and wt plants while 
the E-2-hexenal increased τ(φ) significantly (P < 0.01, 
t-Test) (Fig. 6c). Even though we did not see differences 
between the her2 mutant and wt, we, interestingly, found 
that E-2-hexenal influenced the redox status in the mitochon-
dria and not in the cytosol. Thus part of the redox events 
upon E-2-hexenal perception takes specifically place in the 
mitochondria.

Discussion

E-2-hexenal was identified more than 100 years ago as a vol-
atile that is produced by plants (Curtius and Franzen 1914). 
It has received attention for its ability to induce defense-
related responses in plants, but the mechanisms by which 
plants respond to E-2-hexenal, as well as the signaling path-
ways involved in these responses, remain largely unknown. 
As an approach to address this we isolated E-2-hexenal 
response mutants (her mutants). The characterization of 
these mutants might help to elucidate the signaling pathways 
induced by this C6-aldehyde, as her mutants are the only 
mutants to be affected in a specific physiological response 
to E-2-hexenal. Although Col-0 is a natural hpl mutant 
with impaired C6-volatile production, the her mutants 
were isolated in this ecotype because we wanted to exclude 

Fig. 6   Fluorescence lifetime 
measurement of roGFP2. The 
treatment was performed on 
her2 seedlings with the reporter 
expressed in the cytosol (her2 
roGFP2cyt) or in the mito-
chondria (her2 roGFPmit) and 
on Col-0 seedlings with the 
reporter expressed in the cytosol 
(wt roGFP2cyt) or in the mito-
chondria (wt roGFPmit) under 
different conditions: a 30 min 
20 mM H2O2 and untreated con-
trol, b 1 h MeOH and untreated 
control, c 1 h MeOH or 0.3 μM 
aerial E-2-hexenal, d 1 h MeOH 
or 0.3 μM aerial Z-3-hexenol. 
Every experiment was repeated 
at least three times with similar 
results

(A) (B)

(C) (D)
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the possibility to isolate mutants with altered responses to 
E-2-hexenal associated with altered E-2-hexenal production.

The mutation in the her2 mutant was mapped in the 
gene At5g63620 (Fig. 1), which is putatively assigned as a 
member of the ADH family. The genotype-phenotype cor-
relation was first confirmed by the phenotype of a SALK 
line with a T-DNA insertion in the 1st exon of HER2 
resulting in strongly reduced transcript levels (Figs. 1, S2). 
Secondly, overexpressing of HER2 (Fig. 2) resulted in a 
stronger sensitivity to E-2-hexenal, as measured by the 
root growth assay (Fig. 3). Thus this firmly establishes the 
genotype-phenotype relation.

When HER2 was used as a query for a non-redundant 
database of protein sequences (UniProt), the only protein 
with a reported function that shared similarity was a suc-
cinic semialdehyde dehydrogenase acylating (SSADH-
Acylating) of a thermophile archaea, M. sedula. This 
bacterial SSADH-Acetylating shares 42% identity with 
HER2 (see Fig. S3 in Supplementary Material) and cata-
lyzes the reduction of succinate semialdehyde (SSA) to 
succinyl-CoA (Berg et al. 2007; Kockelkorn and Fuchs 
2009). Succinate semialdehyde (SSA) is a toxic mole-
cule and its accumulation negatively affects plant growth 
(Ludewig et al. 2008). Since the her2 phenotype in soil 
is not dwarfed as the ssadh mutant we can exclude that 
HER2 accumulates SSA. Conversely, if HER2 would con-
vert SSA to succinyl-CoA, SSA would probably also not 
accumulate in the ssadh mutant (Ludewig et al. 2008). 
Thus this activity is unlikely and we were also unable to 
measure it with recombinant HER2 protein. We also tested 
if HER2 has ADH activity with Z-3-hexenal or E-2-hex-
enal as subtrate and NADH or NADPH as cofactors but 
were unable to establish any activity (see Fig. S5 in Sup-
plementary Material). This would also be remarkable 
since it would mean that abolishing this ADH activity in 
the her2 mutant would actually lead to less conversion of 
the reactive E-2-hexenal to the less reactive E-2-hexenol. 
In fact, E-2-hexenol treatment of seedlings does not lead 
to the inhibition of root growth (Mirabella et al. 2008). 
Thus the enzymatic activity of HER2 remains to be deter-
mined, which is not an easy task. One observation in her2 
seedlings is that root growth is slightly but significantly 
slower than in wildtype Arabidopsis under control condi-
tions (Fig. 1a), indicating that this could be, beside the 
E-2-hexenal response, another phenotype for this mutant.

To investigate the role of HER2, predicted to be an 
oxidoreductase, in the response to E-2-hexenal in a wider 
context we designed a set of experiments to determine the 
redox status in the cytosol and mitochondria in planta. RES 
are thought to have an impact on redox signaling in plants 
(Mueller and Berger 2009), as they do in humans (Zhang 
and Xiang 2016). We used a redox sensitive GFP (roGFP2; 
(Meyer et al. 2007), ectopically expressed in wt and her2 

plants, and measured the fluorescence lifetime with FLIM. 
This technique enables the measurement at a single excita-
tion and emission wavelength and not two wavelengths as 
needed with confocal laser scanning microscopy (Avezov 
et al. 2013). It is also photobleaching independent (Naka-
bayashi et al. 2008) and, with this roGFP2 reporter, it has a 
twofold-higher sensitivity than confocal microscopy (Meyer 
et al. 2007; Wierer et al. 2012).

We performed our measurements in the root since it 
is the organ where the growth inhibition occurs upon 
E-2-hexenal treatment, with chlorophyll conveniently 
being absent, with in silico analysis showing high HER2 
expression in root tissues (http://www.genevestigator.
com). Indeed, 20 mM H2O2 treatment for half an hour, 
the positive control, was enough to see roGFP2 become 
oxidized (Wierer et al. 2012), both in the cytosol and mito-
chondria (Fig. 6). Next we used volatile treatments under 
similar conditions as we used to test the root growth phe-
notype. Methanol, in which E-2-hexenal is dissolved, did 
not change the fluorescence lifetime τ(ϕ) but we noticed 
that the roGFP2 in the cytosol had a slightly higher basal 
τ(ϕ) than in the mitochondria. Interestingly, we found that 
E-2-hexenal increased τ(ϕ) in the mitochondria but not in 
the cytosol indicating that this aldehyde affects specifi-
cally the redox status of the mitochondria. This change 
in redox potential in the mitochondria was not obtained 
with Z-3-hexenol, indicating some sort of specificity in 
the response. Thus this finding adds a piece to the puzzle 
of the E-2-hexenal signaling pathway, i.e. redox changes 
specifically taking place in the mitochondria. This also 
addresses an aspect of the selectivity problem regard-
ing redox-signaling that has been raised for electrophile 
species (Mueller and Berger 2009): clearly H2O2 affects 
the redox status in both the cytosol and mitochondria but 
E-2-hexenal only in the mitochondria. Thus differences 
between the transcriptomes induced by H2O2 and the plas-
tidial RES phytoprostane-A1 (Mueller and Berger 2009) 
or by E-2-hexenal (Mirabella et al. 2015) and phytopros-
tane-A1 (Mueller et al. 2008) could be partly explained 
by organelle specific redox changes. It is interesting to 
note that both HER1 (Mirabella et al. 2008) and HER2 are 
localized in mitochondria suggesting that this organelle 
is rather important for E-2-hexenal signaling. The mito-
chondria have highly evolved redox processes in relation 
to respiration and thus maintain a tight redox homeostatis 
for functioning (Schwarzlander and Finkemeier 2013), and 
changes in the redox status of the mitochondria are sig-
naled to the cell (Geigenberger and Fernie 2014; Huang 
et al. 2016; Schwarzlander and Finkemeier 2013). Interest-
ingly, the RES 4-hydroxy-2-nonenal (HNE) can act as a 
signaling molecule in plant mitochondria (Schwarzlander 
and Finkemeier 2013) in which it can also modify mito-
chondrial proteins (Winger et al. 2007). It is conceivable 

http://www.genevestigator.com
http://www.genevestigator.com
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that the redox changes upon E-2-hexenal perception occur 
through activation of the GABA shunt (Mirabella et al. 
2015) which changes the NADH/NAD ratio (Allan et al. 
2008). It is known that there is a tight functional link 
between the GABA shunt and the TCA cycle in plants 
(Michaeli et al. 2011; Studart-Guimaraes et al. 2007). 
Knocking down the mitochondrial GABA transporter 
results in higher succinate levels and, vice versa, knocking 
down succinate CoA ligase results in higher GABA levels. 
Interestingly, ascorbate levels increase in Arabidopsis lines 
with the mitochondrial GABA transporter knocked down 
(Michaeli et al. 2011), indicating that the redox state is 
influenced. Thus together with the recent observation that 
imbalances in succinate have an effect on mitochondrial 
ROS (mtROS)(Belt et al. 2017), we speculate that the 
activation of the GABA shunt by E-2-hexenal specifically 
influences mtROS and not cytosolic ROS through pertur-
bation of succinate homeostasis.

The enzymatic activity of HER2 remains unclear but 
we speculate it has a minor role in maintaining the suc-
cinate balance. Due to its minor role we cannot measure 
any differences in mtROS with the roGFP that we used. 
An alternate route for the production of succinate was also 
suggested (Studart-Guimaraes et al. 2007), but remains 
elusive. Since the GABA shunt plays an important role in 
the response to E-2-hexenal we thought that perhaps that 
the flux through this shunt is higher in the her2 mutant. 
However, we made a double mutant between her1, which 
lacks GABA transaminase and accumulates GABA, and 
her2 but this double mutant does not accumulate more 
GABA than her2 disproving this hypothesis (see Fig. S6 
in Supplementary Material).

We did not see a difference in the redox status between 
the wt and her2 upon E-2-hexenal treatment, which could 
mean that HER2 is not involved in these mitochondrial redox 
changes. This could also be due to the sensitivity of the 
roGFP2 or the timing of our measurements after E-2-hexenal 
treatment if differences in redox changes were transient. This 
explanation is supported by the fact that roGFP2 expressed 
in the mitochondria has a lower degree of oxidation by 
H2O2 than in the cytosol (Schwarzlander et al. 2009) and 
that the E-2-hexenal oxidation of roGFP2 is lower than the 
one caused by H2O2 (Fig. 6a, c). Despite the fact that the 
roGFP2 and FLIM technique have proven to be very useful 
and reproducible, in the future we could use other redox sen-
sitive markers, such as roGFPiE, which sense the reduction 
of the redox state in the compartment of interest (Avezov 
et al. 2013). Another option could be to express the roGFP2 
targeted to the mitochondria in HER2 overexpressing lines 
to achieve a stronger phenotype.

Thus in spite of the fact that the function of HER2 in the 
mitochondria remains to be determined, as is often the case 
with forward-genetic screens in Arabidopsis, it is clear from 

our studies that it is involved in the response to E-2-hexenal. 
Additionally, we have discovered that E-2-hexenal changes 
the redox status of the mitochondria. Very few studies have 
been done to determine the redox status of an organelle in 
planta and this exciting new technique can now also be used 
to study the underlying causes (Schnaubelt et al. 2015).
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