33 research outputs found

    Strategien zur Förderung mündlicher Interaktion im Französischunterricht

    Get PDF
    Die vorliegende Arbeit hat es sich zum Ziel gesetzt erfolgreiche Strategien zur Förderung mündlicher Interaktion im Französischunterricht zu finden. Im ersten, theoretischen Teil der Arbeit wird zuerst die Bedeutung des Begriffs der mündlichen Interaktion im Kontext des Französischunterrichts erläutert. Anschließend gibt ein Überblick der bedeutendsten Fremdsprachenlehrmethoden Aufschluss über die Bedeutung mündlicher Interaktion im Laufe der Geschichte der Fremdsprachendidaktik. Anhand von offiziellen Dokumenten – dem Österreichischen AHS-Oberstufen Lehrplan für lebende Fremdsprachen, dem Gemeinsamen Europäischen Referenzrahmen für Sprachen und dem Europäischen Portfolio für Sprachlehrende in Ausbildung – wird gezeigt, welche Bedeutung der mündlichen Interaktion im Fremdsprachenunterricht heute zugesprochen wird. Im zweiten, empirischen Teil werden Unterrichtsbeobachtungen durchgeführt und die daraus resultierenden Ergebnisse beschrieben und interpretiert. Hierbei wird den Fragen nachgegangen welche Sozialformen im Unterricht beobachtet werden, wie sich die Schülersprechzeit zur Lehrersprechzeit verhält, welche Formen von Redebeiträgen die SchülerInnen in der Fremdsprache leisten, wie viele Schüler an der mündlichen Interaktion in der Fremdsprache teilnehmen, wie Fehler mündlicher Produktion korrigiert werden und welche für mündliche Interaktion förderliche Aktivitäten im Unterricht Anwendung finden. All diese Beobachtungspunkte sollen darüber Aufschluss geben, welchen Stellenwert mündliche Interaktion im heutigen Fremdsprachenunterricht hat und welche Strategien erfolgreich sind, beziehungsweise welche Faktoren für mündliche Interaktion hinderlich sind. Zum Schluss werden alle in der Theorie und Empirie gewonnenen Erkenntnisse zusammengeführt und zehn Hypothesen formuliert, welche Strategien sich anwenden lassen um mündliche Interaktion im Französischunterricht bestmöglich zu fördern

    Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders

    Get PDF
    AbstractPathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example d-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery

    Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug

    Get PDF
    As human life expectancy has improved rapidly in industrialized societies, age-related cognitive impairment presents an increasing challenge. Targeting histopathological processes that correlate with age-related cognitive declines, such as neuroinflammation, low levels of neurogenesis, disrupted blood-brain barrier and altered neuronal activity, might lead to structural and functional rejuvenation of the aged brain. Here we show that a 6-week treatment of young (4 months) and old (20 months) rats with montelukast, a marketed anti-asthmatic drug antagonizing leukotriene receptors, reduces neuroinflammation, elevates hippocampal neurogenesis and improves learning and memory in old animals. By using gene knockdown and knockout approaches, we demonstrate that the effect is mediated through inhibition of the GPR17 receptor. This work illustrates that inhibition of leukotriene receptor signalling might represent a safe and druggable target to restore cognitive functions in old individuals and paves the way for future clinical translation of leukotriene receptor inhibition for the treatment of dementias

    Behavioral and Neurobiological Effects of Deep Brain Stimulation in a Mouse Model of High Anxiety- and Depression-Like Behavior

    Get PDF
    Increasing evidence suggests that high-frequency deep brain stimulation of the nucleus accumbens (NAcb-DBS) may represent a novel therapeutic strategy for individuals suffering from treatment-resistant depression, although the underlying mechanisms of action remain largely unknown. In this study, using a unique mouse model of enhanced depression- and anxiety-like behavior (HAB), we investigated behavioral and neurobiological effects of NAcb-DBS. HAB mice either underwent chronic treatment with one of three different selective serotonin reuptake inhibitors (SSRIs) or received NAcb-DBS for 1 h per day for 7 consecutive days. Animals were tested in established paradigms revealing depression- and anxiety-related behaviors. The enhanced depression-like behavior of HAB mice was not influenced by chronic SSRI treatment. In contrast, repeated, but not single, NAcb-DBS induced robust antidepressant and anxiolytic responses in HAB animals, while these behaviors remained unaffected in normal depression/anxiety animals (NAB), suggesting a preferential effect of NAcb-DBS on pathophysiologically deranged systems. NAcb-DBS caused a modulation of challenge-induced activity in various stress- and depression-related brain regions, including an increase in c-Fos expression in the dentate gyrus of the hippocampus and enhanced hippocampal neurogenesis in HABs. Taken together, these findings show that the normalization of the pathophysiologically enhanced, SSRI-insensitive depression-like behavior by repeated NAcb-DBS was associated with the reversal of reported aberrant brain activity and impaired adult neurogenesis in HAB mice, indicating that NAcb-DBS affects neuronal activity as well as plasticity in a defined, mood-associated network. Thus, HAB mice may represent a clinically relevant model for elucidating the neurobiological correlates of NAcb-DBS

    Epigenetic Mechanisms Within the Cingulate Cortex Regulate Innate Anxiety-Like Behavior

    No full text
    Background Pathological anxiety originates from a complex interplay of genetic predisposition and environmental factors, acting via epigenetic mechanisms. Epigenetic processes that can counteract detrimental genetic risk towards innate high anxiety are not well characterized. Methods We used female mouse lines of selectively bred high (HAB)- vs low (LAB)-innate anxiety-related behavior and performed select environmental and pharmacological manipulations to alter anxiety levels as well as brain-specific manipulations and immunohistochemistry to investigate neuronal mechanisms associated with alterations in anxiety-related behavior. Results Inborn hyperanxiety of high anxiety-like phenotypes was effectively reduced by environmental enrichment exposure. c-Fos mapping revealed that hyperanxiety in high anxiety-like phenotypes was associated with blunted challenge-induced neuronal activation in the cingulate-cortex, which was normalized by environmental enrichment. Relating this finding with epigenetic modifications, we found that high anxiety-like phenotypes (compared with low-innate anxiety phenotypes) showed reduced acetylation in the hypoactivated cingulate-cortex neurons following a mild emotional challenge, which again was normalized by environmental enrichment. Paralleling the findings using environmental enrichment, systemic administration of histone-deacetylase-inhibitor MS-275 elicited an anxiolytic-like effect, which was correlated with increased acetylated-histone-3 levels within cingulate-cortex. Finally, as a proof-of-principle, local MS-275 injection into cingulate-cortex rescued enhanced innate anxiety and increased acetylated-histone-3 within the cingulate-cortex, suggesting this epigenetic mark as a biomarker for treatment success. Conclusions Taken together, the present findings provide the first causal evidence that the attenuation of high innate anxiety-like behavior via environmental/pharmacological manipulations is epigenetically mediated via acetylation changes within the cingulate-cortex. Finally, histone-3 specific histone-deacetylase-inhibitor could be of therapeutic importance in anxiety disorders

    Combined Neuropeptide S and D-Cycloserine Augmentation Prevents the Return of Fear in Extinction-Impaired Rodents: Advantage of Dual versus Single Drug Approaches

    No full text
    Background: Despite its success in treating specific anxiety disorders, the effect of exposure therapy is limited by problems with tolerability, treatment resistance, and fear relapse after initial response. The identification of novel drug targets facilitating fear extinction in clinically relevant animal models may guide improved treatment strategies for these disorders in terms of efficacy, acceleration of fear extinction, and return of fear. Methods: The extinction-facilitating potential of neuropeptide S, D-cycloserine, and a benzodiazepine was investigated in extinction-impaired high anxiety HAB rats and 129S1/SvImJ mice using a classical cued fear conditioning paradigm followed by extinction training and several extinction test sessions to study fear relapse. Results: Administration of D-cycloserine improved fear extinction in extinction-limited, but not in extinction-deficient, rodents compared with controls. Preextinction neuropeptide S caused attenuated fear responses in extinction-deficient 129S1/SvImJ mice at extinction training onset and further reduced freezing during this session. While the positive effects of either D-cycloserine or neuropeptide S were not persistent in 129S1/SvImJ mice after 10 days, the combination of preextinction neuropeptide S with postextinction D-cycloserine rendered the extinction memory persistent and context independent up to 5 weeks after extinction training. This dual pharmacological adjunct to extinction learning also protected against fear reinstatement in 129S1/SvImJ mice. Conclusions: By using the potentially nonsedative anxiolytic neuropeptide S and the cognitive enhancer D-cycloserine to facilitate deficient fear extinction, we provide here the first evidence of a purported efficacy of a dual over a single drug approach. This approach may render exposure sessions less aversive and more efficacious for patients, leading to enhanced protection from fear relapse in the long term
    corecore