18 research outputs found

    Sidescan Sonar Image, Surficial Geologic Interpretation, and Bathymetry of the Long Island Sound Sea Floor off Hammonasset Beach State Park, Connecticut

    Get PDF
    Ongoing research by the U.S. Geological Survey (USGS) in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States, is building upon cooperative research with the State of Connecticut that was initiated in 1982. During the initial phase of this cooperative program, geologic framework studies in Long Island Sound were completed and results published (Lewis and Needell, 1987; Needell and others, 1987; Lewis and Stone, 1991). Emphasis of the present program in Long Island Sound is shifting from framework studies toward studies of the sediment distribution, processes that control this sediment distribution, nearshore environmental concerns, and the relation of benthic community structures to the sea-floor geology. Because of the enormous surrounding population, large inputs of anthropogenic wastes (e.g., fertilizer and sewage) and toxic chemicals have produced stresses on the environment of the Sound, causing degradation and potential loss of benthic habitats (Long Island Sound Study, 1994). To examine this problem, we are constructing sidescan sonar mosaics (complete-coverage acoustic images) of the sea floor within areas of special interest, such as in areas affected by seasonal hypoxia like the Norwalk survey or near major coastal resources like the Hammonasset Beach survey (fig.1). The mosaic that we have constructed off Hammonasset Beach State Park and which is presented herein allows insight into the geological variability of the sea floor, which is one of the primary controls of benthic habitat diversity. It also provides a detailed framework for future research, monitoring, and management activities, and it improves our understanding of the complex processes that control the distribution of bottom sediments, benthic habitats, and associated infaunal community structures off one of the most significant coastal recreational facilities within the State of Connecticut. Because precise information on environmental setting is important to the selection of sampling sites and to the accurate interpretation of point measurements, the sidescan sonar mosaics also act as base maps for subsequent sedimentological, geochemical, and infaunal sampling and bottom photography

    Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions.

    Get PDF
    The epicardium contributes both multi-lineage descendants and paracrine factors to the heart during cardiogenesis and cardiac repair, underscoring its potential for cardiac regenerative medicine. Yet little is known about the cellular and molecular mechanisms that regulate human epicardial development and regeneration. Here, we show that the temporal modulation of canonical Wnt signaling is sufficient for epicardial induction from 6 different human pluripotent stem cell (hPSC) lines, including a WT1-2A-eGFP knock-in reporter line, under chemically-defined, xeno-free conditions. We also show that treatment with transforming growth factor beta (TGF-β)-signalling inhibitors permitted long-term expansion of the hPSC-derived epicardial cells, resulting in a more than 25 population doublings of WT1+ cells in homogenous monolayers. The hPSC-derived epicardial cells were similar to primary epicardial cells both in vitro and in vivo, as determined by morphological and functional assays, including RNA-seq. Our findings have implications for the understanding of self-renewal mechanisms of the epicardium and for epicardial regeneration using cellular or small-molecule therapies

    Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors

    Get PDF
    Cardiac fibroblasts (CFs) play critical roles in heart development, homeostasis, and disease. The limited availability of human CFs from native heart impedes investigations of CF biology and their role in disease. Human pluripotent stem cells (hPSCs) provide a highly renewable and genetically defined cell source, but efficient methods to generate CFs from hPSCs have not been described. Here, we show differentiation of hPSCs using sequential modulation of Wnt and FGF signaling to generate second heart field progenitors that efficiently give rise to hPSC-CFs. The hPSC-CFs resemble native heart CFs in cell morphology, proliferation, gene expression, fibroblast marker expression, production of extracellular matrix and myofibroblast transformation induced by TGFβ1 and angiotensin II. Furthermore, hPSC-CFs exhibit a more embryonic phenotype when compared to fetal and adult primary human CFs. Co-culture of hPSC-CFs with hPSC-derived cardiomyocytes distinctly alters the electrophysiological properties of the cardiomyocytes compared to co-culture with dermal fibroblasts. The hPSC-CFs provide a powerful cell source for research, drug discovery, precision medicine, and therapeutic applications in cardiac regeneration.J.L.C. received funding from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior and Fundação de Amparo à Pesquisa do Distrito Federal. The work was funded by NIH R01 HL129798 (T.J.K.); NIH U01 HL134764 (T.J.K.); S10RR025644 (T.J.K.); and the UW Institute for Clinical and Translational Research, grant UL1TR000427, from the Clinical and Translational Science Award of the NCATS/NIH.S

    Identifying molecular and functional similarities and differences between human primary cardiac valve interstitial cells and ventricular fibroblasts

    Get PDF
    Introduction: Fibroblasts are mesenchymal cells that predominantly produce and maintain the extracellular matrix (ECM) and are critical mediators of injury response. In the heart, valve interstitial cells (VICs) are a population of fibroblasts responsible for maintaining the structure and function of heart valves. These cells are regionally distinct from myocardial fibroblasts, including left ventricular cardiac fibroblasts (LVCFBs), which are located in the myocardium in close vicinity to cardiomyocytes. Here, we hypothesize these subpopulations of fibroblasts are transcriptionally and functionally distinct.Methods: To compare these fibroblast subtypes, we collected patient-matched samples of human primary VICs and LVCFBs and performed bulk RNA sequencing, extracellular matrix profiling, and functional contraction and calcification assays.Results: Here, we identified combined expression of SUSD2 on a protein-level, and MEOX2, EBF2 and RHOU at a transcript-level to be differentially expressed in VICs compared to LVCFBs and demonstrated that expression of these genes can be used to distinguish between the two subpopulations. We found both VICs and LVCFBs expressed similar activation and contraction potential in vitro, but VICs showed an increase in ALP activity when activated and higher expression in matricellular proteins, including cartilage oligomeric protein and alpha 2-Heremans-Schmid glycoprotein, both of which are reported to be linked to calcification, compared to LVCFBs.Conclusion: These comparative transcriptomic, proteomic, and functional studies shed novel insight into the similarities and differences between valve interstitial cells and left ventricular cardiac fibroblasts and will aid in understanding region-specific cardiac pathologies, distinguishing between primary subpopulations of fibroblasts, and generating region-specific stem-cell derived cardiac fibroblasts
    corecore