11 research outputs found

    Bernoulli Race Particle Filters

    Full text link
    When the weights in a particle filter are not available analytically, standard resampling methods cannot be employed. To circumvent this problem state-of-the-art algorithms replace the true weights with non-negative unbiased estimates. This algorithm is still valid but at the cost of higher variance of the resulting filtering estimates in comparison to a particle filter using the true weights. We propose here a novel algorithm that allows for resampling according to the true intractable weights when only an unbiased estimator of the weights is available. We demonstrate our algorithm on several examples.Comment: 19 page

    Large Sample Asymptotics of the Pseudo-Marginal Method

    Get PDF
    The pseudo-marginal algorithm is a variant of the Metropolis--Hastings algorithm which samples asymptotically from a probability distribution when it is only possible to estimate unbiasedly an unnormalized version of its density. Practically, one has to trade-off the computational resources used to obtain this estimator against the asymptotic variances of the ergodic averages obtained by the pseudo-marginal algorithm. Recent works optimizing this trade-off rely on some strong assumptions which can cast doubts over their practical relevance. In particular, they all assume that the distribution of the difference between the log-density and its estimate is independent of the parameter value at which it is evaluated. Under regularity conditions we show here that, as the number of data points tends to infinity, a space-rescaled version of the pseudo-marginal chain converges weakly towards another pseudo-marginal chain for which this assumption indeed holds. A study of this limiting chain allows us to provide parameter dimension-dependent guidelines on how to optimally scale a normal random walk proposal and the number of Monte Carlo samples for the pseudo-marginal method in the large-sample regime. This complements and validates currently available results.Comment: 76 pages, 3 figure

    Capturing Label Characteristics in VAEs

    Full text link
    We present a principled approach to incorporating labels in VAEs that captures the rich characteristic information associated with those labels. While prior work has typically conflated these by learning latent variables that directly correspond to label values, we argue this is contrary to the intended effect of supervision in VAEs-capturing rich label characteristics with the latents. For example, we may want to capture the characteristics of a face that make it look young, rather than just the age of the person. To this end, we develop the CCVAE, a novel VAE model and concomitant variational objective which captures label characteristics explicitly in the latent space, eschewing direct correspondences between label values and latents. Through judicious structuring of mappings between such characteristic latents and labels, we show that the CCVAE can effectively learn meaningful representations of the characteristics of interest across a variety of supervision schemes. In particular, we show that the CCVAE allows for more effective and more general interventions to be performed, such as smooth traversals within the characteristics for a given label, diverse conditional generation, and transferring characteristics across datapoints.Comment: Accepted to ICLR 202

    Optimal scaling of random-walk Metropolis algorithms using Bayesian large-sample asymptotics

    Get PDF
    High-dimensional limit theorems have been useful to derive tuning rules for finding the optimal scaling in randomwalk Metropolis algorithms. The assumptions under which weak convergence results are proved are however restrictive: the target density is typically assumed to be of a product form. Users may thus doubt the validity of such tuning rules in practical applications. In this paper, we shed some light on optimal-scaling problems from a different perspective, namely a large-sample one. This allows to prove weak convergence results under realistic assumptions and to propose novel parameterdimension- dependent tuning guidelines. The proposed guidelines are consistent with previous ones when the target density is close to having a product form, and the results highlight that the correlation structure has to be accounted for to avoid performance deterioration if that is not the case, while justifying the use of a natural (asymptotically exact) approximation to the correlation matrix that can be employed for the very first algorithm run

    AnoDDPM: Anomaly Detection With Denoising Diffusion Probabilistic Models Using Simplex Noise

    Get PDF
    Generative models have been shown to provide a powerful mechanism for anomaly detection by learning to model healthy or normal reference data which can subsequently be used as a baseline for scoring anomalies. In this work we consider denoising diffusion probabilistic models (DDPMs) for unsupervised anomaly detection. DDPMs have superior mode coverage over generative adversarial networks (GANs) and higher sample quality than variational autoencoders (VAEs). However, this comes at the expense of poor scalability and increased sampling times due to the long Markov chain sequences required. We observe that within reconstruction-based anomaly detection a full-length Markov chain diffusion is not required. This leads us to develop a novel partial diffusion anomaly detection strategy that scales to high-resolution imagery, named AnoDDPM. A secondary problem is that Gaussian diffusion fails to capture larger anomalies; therefore we develop a multi-scale simplex noise diffusion process that gives control over the target anomaly size. AnoDDPM with simplex noise is shown to significantly outperform both f-AnoGAN and Gaussian diffusion for the tumorous dataset of 22 T1- weighted MRI scans (CCBS Edinburgh) qualitatively and quantitatively (improvement of +25.5% Sørensen–Dice coefficient, +17.6% IoU and +7.4% AUC)

    Denoising Diffusion Probabilistic Models on SO(3) for Rotational Alignment

    Get PDF
    Probabilistic diffusion models are capable of modeling complex data distributions on high-dimensional Euclidean spaces for a range applications. However, many real world tasks involve more complex structures such as data distributions defined on manifolds which cannot be easily represented by diffusions on Rn. This paper proposes denoising diffusion models for tasks involving 3D rotations leveraging diffusion processes on the Lie group SO(3) in order to generate candidate solutions to rotational alignment tasks. The experimental results show the proposed SO(3) diffusion process outperforms na¨ıve approaches such as Euler angle diffusion in synthetic rotational distribution sampling and in a 3D object alignment task

    Learning Multimodal VAEs Through Mutual Supervision

    Get PDF
    Multimodal VAEs seek to model the joint distribution over heterogeneous data (e.g.\ vision, language), whilst also capturing a shared representation across such modalities. Prior work has typically combined information from the modalities by reconciling idiosyncratic representations directly in the recognition model through explicit products, mixtures, or other such factorisations. Here we introduce a novel alternative, the MEME, that avoids such explicit combinations by repurposing semi-supervised VAEs to combine information between modalities implicitly through mutual supervision. This formulation naturally allows learning from partially-observed data where some modalities can be entirely missing---something that most existing approaches either cannot handle, or do so to a limited extent. We demonstrate that MEME outperforms baselines on standard metrics across both partial and complete observation schemes on the MNIST-SVHN (image--image) and CUB (image--text) datasets. We also contrast the quality of the representations learnt by mutual supervision against standard approaches and observe interesting trends in its ability to capture relatedness between data
    corecore