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ABSTRACT

Multimodal variational autoencoders (VAEs) seek to model the joint distribution
over heterogeneous data (e.g. vision, language), whilst also capturing a shared
representation across such modalities. Prior work has typically combined infor-
mation from the modalities by reconciling idiosyncratic representations directly in
the recognition model through explicit products, mixtures, or other such factorisa-
tions. Here we introduce a novel alternative, the Mutually supErvised Multimodal
VAE (MEME), that avoids such explicit combinations by repurposing semi-
supervised VAEs to combine information between modalities implicitly through
mutual supervision. This formulation naturally allows learning from partially-
observed data where some modalities can be entirely missing—something that
most existing approaches either cannot handle, or do so to a limited extent. We
demonstrate that MEME outperforms baselines on standard metrics across both
partial and complete observation schemes on the MNIST-SVHN (image–image)
and CUB (image–text) datasets1. We also contrast the quality of the representa-
tions learnt by mutual supervision against standard approaches and observe inter-
esting trends in its ability to capture relatedness between data.

1 INTRODUCTION

Modelling the generative process underlying heterogenous data, particularly data spanning multiple
perceptual modalities such as vision or language, can be enormously challenging. Consider for ex-
ample, the case where data spans across photographs and sketches of objects. Here, a data point,
comprising of an instance from each modality, is constrained by the fact that the instances are re-
lated and must depict the same underlying abstract concept. An effective model not only needs to
faithfully generate data in each of the different modalities, it also needs to do so in a manner that
preserves the underlying relation between modalities. Learning a model over multimodal data thus
relies on the ability to bring together information from idiosyncratic sources in such a way as to
overlap on aspects they relate on, while remaining disjoint otherwise.

Variational autoencoders (VAEs) (Kingma & Welling, 2014) are a class of deep generative mod-
els that are particularly well-suited for multimodal data as they employ the use of encoders—
learnable mappings from high-dimensional data to lower-dimensional representations—that provide
the means to combine information across modalities. They can also be adapted to work in situations
where instances are missing for some modalities; a common problem where there are inherent diffi-
culties in obtaining and curating heterogenous data. Much of the work in multimodal VAEs involves
exploring different ways to model and formalise the combination of information with a view to im-
proving the quality of the learnt models (see § 2).

Prior approaches typically combine information through explicit specification as products (Wu &
Goodman, 2018), mixtures (Shi et al., 2019), combinations of such (Sutter et al., 2021), or through
additional regularisers on the representations (Suzuki et al., 2016; Sutter et al., 2020). Here, we
explore an alternative approach that leverages advances in semi-supervised VAEs (Siddharth et al.,

1The codebase is available at the following location: https://github.com/thwjoy/meme.
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Figure 1: Constraints on the representations. (a) VAE: A prior regularises the data encoding distribution through
KL. (b) Typical multimodal VAE: Encodings for different modalities are first explicitly combined, with the
result regularised by a prior through KL. (c) MEME (ours): Leverage semi-supervised VAEs to cast one
modality as a conditional prior, implicitly supervising/regularising the other through the VAE’s KL. Mirroring
the arrangement to account for KL asymmetry enables multimodal VAEs through mutual supervision.

2017; Joy et al., 2021) to repurpose existing regularisation in the VAE framework as an implicit
means by which information is combined across modalities (see Figure 1).

We develop a novel formulation for multimodal VAEs that views the combination of information
through a semi-supervised lens, as mutual supervision between modalities. We term this approach
Mutually supErvised Multimodal VAE (MEME). Our approach not only avoids the need for ad-
ditional explicit combinations, but it also naturally extends to learning in the partially-observed
setting—something that most prior approaches cannot handle. We evaluate MEME on standard
metrics for multimodal VAEs across both partial and complete data settings, on the typical multi-
modal data domains, MNIST-SVHN (image-image) and the less common but notably more complex
CUB (image-text), and show that it outperforms prior work on both. We additionally investigate the
capability of MEMEs ability to capture the ‘relatedness’, a notion of semantic similarity, between
modalities in the latent representation; in this setting we also find that MEME outperforms prior
work considerably.

2 RELATED WORK

Prior approaches to multimodal VAEs can be broadly categorised in terms of the explicit combina-
tion of representations (distributions), namely concatenation and factorization.

Concatenation: Models in this category learn joint representation by either concatenating the inputs
themselves or their modality-specific representations. Examples for the former includes early work
in multimodal VAEs such as the JMVAE (Suzuki et al., 2016), triple ELBO (Vedantam et al., 2018)
and MFM (Tsai et al., 2019), which define a joint encoder over concatenated multimodal data.
Such approaches usually require the training of auxiliary modality-specific components to handle
the partially-observed setting, with missing modalities, at test time. They also cannot learn from
partially-observed data. In very recent work, Gong et al. (2021) propose VSAE where the latent
representation is constructed as the concatenation of modality-specific encoders. Inspired by VAEs
that deal with imputing pixels in images such as VAEAC (Ivanov et al., 2019), Partial VAE (Ma
et al., 2018), MIWAE (Mattei & Frellsen, 2019), HI-VAE (Nazábal et al., 2020) and pattern-set
mixture model (Ghalebikesabi et al., 2021), VSAE can learn in the partially-observed setting by
incorporating a modality mask. This, however, introduces additional components such as a collective
proposal network and a mask generative network, while ignoring the need for the joint distribution
over data to capture some notion of the relatedness between modalities.

Factorization: In order to handle missing data at test time without auxiliary components, recent
work propose to factorize the posterior over all modalities as the product (Wu & Goodman, 2018)
or mixture (Shi et al., 2019) of modality-specific posteriors (experts). Following this, Sutter et al.
(2021) proposes to combine the two approaches (MoPoE-VAE) to improve learning in settings where
the number of modalities exceeds two. In contrast to these methods, mmJSD (Sutter et al., 2020)
combines information not in the posterior, but in a “dynamic prior”, defined as a function (either
mixture or product) over the modality-specific posteriors as well as pre-defined prior.

Table 1 provides a high-level summary of prior work. Note that all the prior approaches have
some explicit form of joint representation or distribution, where some of them induces the need
for auxiliary components to deal with missing data at test time, while others are established without
significant theoretical benefits. By building upon a semi-supervised framework, our method MEME
circumvents this issue to learn representations through mutual supervision between modalities, and
is able to deal with missing data at train or test time naturally without additional components.
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Table 1: We examine four characteristics: The ability to handle partial observation at test and train time,
the form of the joint distribution or representation in the bi-modal case (s, t are modalities), and additional
components. (3) indicates a theoretical capability that is not verified empirically.

Partial Test Partial Train Joint repr./dist. Additional

JMVAE 3 7 qΦ(z|s, t) qφs(z|s), qφt(z|t)
tELBO 3 7 qΦ(z|s, t) qφs(z|s), qφt(z|t)
MFM 3 7 qΦ(z|s, t) qφs(z|s), qφt(z|t)
VSVAE 3 3 concat(zs, zt) mask generative network
MVAE 3 (3) qφs(z|s)qφt(z|t)p(z) sub-sampling
MMVAE 3 7 qφs(z|s) + qφt(z|t) -
MoPoE 3 (3) qφs(z|s) + qφt(z|t) + qφs(z|s)qφt(z|t) -
mmJSD 3 7 f(qφs(z|s), qφt(z|t), p(z)) -
Ours 3 3 - -

3 METHOD

Consider a scenario where we are given data spanning two modalities, s and t, curated as pairs
(s, t). For example this could be an “image” and associated “caption” of an observed scene. We
will further assume that some proportion of observations have one of the modalities missing, leaving
us with partially-observed data. Using Ds,t to denote the proportion containing fully observed pairs
from both modalities, and Ds, Dt for the proportion containing observations only from modality s
and t respectively, we can decompose the data as D = Ds ∪ Dt ∪ Ds,t.

In aid of clarity, we will introduce our method by confining attention to this bi-modal case, providing
a discussion on generalising beyond two modalities later. Following established notation in the
literature on VAEs, we will denote the generative model using p, latent variable using z, and the
encoder, or recognition model, using q. Subscripts for the generative and recognition models, where
indicated, denote the parameters of deep neural networks associated with that model.

3.1 SEMI-SUPERVISED VAEs

To develop our approach we draw inspiration from semi-supervised VAEs which use additional
information, typically data labels, to extend the generative model. This facilitates learning tasks such
as disentangling latent representations and performing intervention through conditional generation.
In particular, we will build upon the work of Joy et al. (2021), who suggests to supervise latent
representations in VAEs with partial label information by forcing the encoder, or recognition model,
to channel the flow of information as s → z → t. They demonstrate that the model learns latent
representations, z, of data, s, that can be faithfully identified with label information t.
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Figure 2: Simplified graphical
model from Joy et al. (2021).

Figure 2 shows a modified version of the graphical model from Joy
et al. (2021), extracting just the salient components, and avoiding
additional constraints therein. The label, here t, is denoted as par-
tially observed as not all observations s have associated labels. Note
that, following the information flow argument, the generative model
factorises as pθ,ψ(s, z, t) = pθ(s | z) pψ(z | t) p(t) (solid arrows)
whereas the recognition model factorises as qφ,ϕ(t, z | s) = qϕ(t |
z) qφ(z | s) (dashed arrows). This autoregressive formulation of
both the generative and recognition models is what enables the “su-
pervision” of the latent representation of s by the label, t, via the
conditional prior pψ(z | t) as well as the classifier qϕ(t | z).

The corresponding objective for supervised data, derived as the (negative) variational free energy or
evidence lower bound (ELBO) of the model is

log pθ,ψ(s, t)≥L{Θ,Φ}(s, t)=Eqφ(z|s)

[
qϕ(t|z)

qφ(z|s)
log

pθ(s|z)pψ(z|t)

qφ(z|s)qϕ(t|z)

]
+log qφ,ϕ(t|s)+log p(t), (1)

with the generative and recognition model parameterised by Θ = {θ, ϑ} and Φ = {φ, ϕ} respec-
tively. A derivation of this objective can be found in Appendix A.
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3.2 MUTUAL SUPERVISION

Procedurally, a semi-supervised VAE is already multimodal. Beyond viewing labels as a separate
data modality, for more typical multimodal data (vision, language), one would just need to replace
labels with data from the appropriate modality, and adjust the corresponding encoder and decoder
to handle such data. Conceptually however, this simple replacement can be problematic.

Supervised learning encapsulates a very specific imbalance in information between observed data
and the labels—that labels do not encode information beyond what is available in the observation
itself. This is a consequence of the fact that labels are typically characterised as projections of the
data into some lower-dimensional conceptual subspace such as the set of object classes one may
encounter in images, for example. Such projections cannot introduce additional information into the
system, implying that the information in the data subsumes the information in the labels, i.e. that the
conditional entropy of label t given data s is zero: H(t | s) = 0. Supervision-based models typically
incorporate this information imbalance as a feature, as observed in the specific correspondences and
structuring enforced between their label y and latent z in Joy et al. (2021).

Multimodal data of the kind considered here, on the other hand, does not exhibit this feature. Rather
than being characterised as a projection from one modality to another, they are better understood as
idiosyncratic projections of an abstract concept into distinct modalities—for example, as an image
of a bird or a textual description of it. In this setting, no one modality has all the information, as
each modality can encode unique perspectives opaque to the other. More formally, this implies that
both the conditional entropies H(t | s) and H(s | t) are finite.

Based on this insight we symmetrise the semi-supervised VAE formulation by additionally con-
structing a mirrored version, where we swap s and t along with their corresponding parameters, i.e.
the generative model now uses the parameters Φ and the recognition model now uses the parameters
Θ. This has the effect of also incorporating the information flow in the opposite direction to the stan-
dard case as t → z → s, ensuring that the modalities are now mutually supervised. This approach
forces each encoder to act as an encoding distribution when information flows one way, but also
act as a prior distribution when the information flows the other way. Extending the semi-supervised
VAE objective (6), we construct a bi-directional objective for MEME

LBi(s, t) =
1

2

[
L{Θ,Φ}(s, t) + L{Φ,Θ}(t, s)

]
, (2)

where both information flows are weighted equally. On a practical note, we find that it is important
to ensure that parameters are shared appropriately when mirroring the terms, and that the variance
in the gradient estimator is controlled effectively. Please see Appendices B to D for further details.

3.3 LEARNING FROM PARTIAL OBSERVATIONS

In practice, prohibitive costs on multimodal data collection and curation imply that observations
can frequently be partial, i.e., have missing modalities. One of the main benefits of the method
introduced here is its natural extension to the case of partial observations on account of its semi-
supervised underpinnings. Consider, without loss of generality, the case where we observe modality
s, but not its pair t. Recalling the autoregressive generative model p(s, z, t) = p(s | z)p(z | t)p(t)
we can derive a lower bound on the log-evidence

log pθ,ψ(s) = log

∫
pθ(s | z)pψ(z | t)p(t) dz dt ≥ Eqφ(z|s)

[
log

pθ(s | z)
∫
pψ(z | t)p(t) dt

qφ(z | s)

]
. (3)

Estimating the integral p(z) =
∫
p(z | t)p(t) dt highlights another conceptual difference between

a (semi-)supervised setting and a multimodal one. When t is seen as a label, this typically implies
that one could possibly compute the integral exactly by explicit marginalisation over its support, or
at the very least, construct a reasonable estimate through simple Monte-Carlo integration. In Joy
et al. (2021), the authors extend the latter approach through importance sampling with the “inner”
encoder q(t | z), to construct a looser lower bound to (3).

In the multimodal setting however, this poses serious difficulties as the domain of the variable t
is not simple categorical labels, but rather complex continuous-valued data. This rules out exact
marginalisation, and renders further importance-sampling practically infeasible on account of the
quality of samples one can expect from the encoder q(t | z) which itself is being learnt from
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data. To overcome this issue and to ensure a flexible alternative, we adopt an approach inspired
by the VampPrior (Tomczak & Welling, 2018). Noting that our formulation includes a conditional
prior pψ(z | t), we introduce learnable pseudo-samples λt = {ut

i}Ni=1 to estimate the prior as
pλt(z) = 1

N

∑N
i=1 pψ(z | ut

i ). Our objective for when t is unobserved is thus

L(s) = Eqφ(z|s)

[
log

pθ(s | z)pλt(z)

qφ(z | s)

]
= Eqφ(z|s)

[
log

pθ(s | z)

qφ(z | s)
+ log

1

N

N∑
i=1

pψ(z | ut
i )

]
, (4)

where the equivalent objective for when s is missing can be derived in a similar way. For a datasetD
containing partial observations the overall objective (to maximise) becomes∑

s,t∈D
log pθ,ψ(s, t) ≥

∑
s∈Ds

L(s) +
∑
t∈Dt

L(t) +
∑

s,t∈Ds,t

LBi(s, t), (5)

This treatment of unobserved data distinguishes our approach from alternatives such as that of Shi
et al. (2019), where model updates for missing modalities are infeasible. Whilst there is the possibil-
ity to perform multimodal learning in the weakly supervised case as introduced by Wu & Goodman
(2018), their approach directly affects the posterior distribution, whereas ours only affects the reg-
ularization of the embedding during training. At test time, Wu & Goodman (2018) will produce
different embeddings depending on whether all modalities are present, which is typically at odds
with the concept of placing the embeddings of related modalities in the same region of the latent
space. Our approach does not suffer from this issue as the posterior remains unchanged regardless
of whether the other modality is present or not.

Learning with MEME Given the overall objective in (5), we train MEME through maximum-
likelihood estimation of the objective over a dataset D. Each observation from the dataset is op-
timised using the relevant term in the right-hand side of (5), through the use of standard stocastic
gradient descent methods. Note that training the objective involves learning all the (neural network)
parameters (θ, ψ, φ, ϕ) in the fully-observed, bi-directional case. When training with a partial ob-
servation, say just s, all parameters except the relevant likelihood parameter ϕ (for qϕ(t | z)) are
learnt. Note that the encoding for data in the domain of t is still computed through the learnable
pseudo-samples λt. This is reversed when training on an observation with just t.

Generalisation beyond two modalities We confine our attention here to the bi-modal case for
two important reasons. Firstly, the number of modalities one typically encounters in the multimodal
setting is fairly small to begin with. This is often a consequence of its motivation from embodied
perception, where one is restricted by the relatively small number of senses available (e.g. sight,
sound, proprioception). Furthermore, the vast majority of prior work on multimodal VAEs only
really consider the bimodal setting (cf. § 2). Secondly, it is quite straightforward to extend MEME
to settings beyond the bimodal case, by simply incorporating existing explicit combinations (e.g.
mixtures or products) on top of the implicit combination discussed here, we provide further expla-
nation in Appendix E. Our focus in this work lies in exploring and analysing the utility of implicit
combination in the multimodal setting, and our formulation and experiments reflect this focus.

4 EXPERIMENTS

4.1 LEARNING FROM PARTIALLY OBSERVED DATA

In this section, we evaluate the performance of MEME following standard multimodal VAE metrics
as proposed in Shi et al. (2019). Since our model benefits from its implicit latent regularisation and
is able to learn from partially-observed data, here we evaluate MEME’s performance when different
proportions of data are missing in either or both modalities during training. The two metrics used
are cross coherence to evaluate the semantic consistency in the reconstructions, as well as latent
accuracy in a classification task to quantitatively evaluate the representation learnt in the latent
space. We demonstrate our results on two datasets, namely an image ↔ image dataset MNIST-
SVHN (LeCun et al., 2010; Netzer et al., 2011), which is commonly used to evaluate multimodal
VAEs (Shi et al., 2019; Shi et al., 2021; Sutter et al., 2020; 2021); as well as the more challenging,
but less common, image↔ caption dataset CUB (Welinder et al., 2010).
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Figure 3: MEME cross-modal generations for MNIST-SVHN.

being this bird has a bird
brown and and and very short
beak.

this is a bird with a red
breast and a red head.

distinct this bird has wings
that are black and has an
orange belly.

this bird has a black top
and yellow bottom with black
lines , the head and beak
are small.

most this bird has wings
that are green and has an
red belly

this is a large black bird
with a long neck and bright
orange cheek patches.

Figure 4: MEME cross-modal generations for CUB.

Following standard approaches, we represented image likelihoods using Laplace distributions, and
a categorical distribution for caption data. The latent variables are parameterised by Gaussian distri-
butions. In line with previous research (Shi et al., 2019; Massiceti et al., 2018), simple convolutional
architectures were used for both MNIST-SVHN and for CUB images and captions. For details on
training and exact architectures see Appendix K; we also provide tabularised results in Appendix H.

Cross Coherence Here, we focus mainly on the model’s ability to reconstruct one modality, say,
t, given another modality, s, as input, while preserving the conceptual commonality between the
two. In keeping with Shi et al. (2019), we report the cross coherence score on MNIST-SVHN as the
percentage of matching digit predictions of the input and output modality obtained from a pre-trained
classifier. On CUB we perform canonical correlation analysis (CCA) on input-output pairs of cross
generation to measure the correlation between these samples. For more details on the computation
of CCA values we refer to Appendix G.

In Figure 5 we plot cross coherence for MNIST-SVHN and display correlation results for CUB in
Figure 6, across different partial-observation schemes. The x-axis represents the proportion of data
that is paired, while the subscript to the method (see legends) indicates the modality that is presented.
For instance, MEME MNIST with f = 0.25 indicates that only 25% of samples are paired, and the
other 75% only contain MNIST digits, and MEME SPLIT with f = 0.25 indicates that the 75%
contains a mix of MNIST and SVHN samples that are unpaired and never observed together, i.e
we alternate depending on the iteration, the remaining 25% contain paired samples. We provide
qualitative results in Figure 3 and Figure 4.

We can see that our model is able to obtain higher coherence scores than the baselines including
MVAE (Wu & Goodman, 2018) and MMVAE (Shi et al., 2019) in the fully observed case, f = 1.0,
as well as in the case of partial observations, f < 1.0. This holds true for both MNIST-SVHN and
CUB2. It is worth pointing out that the coherence between SVHN and MNIST is similar for both
partially observing MNIST or SVHN, i.e. generating MNIST digits from SVHN is more robust to
which modalities are observed during training (Figure 5 Right). However, when generating SVHN
from MNIST, this is not the case, as when partially observing MNIST during training the model
struggles to generate appropriate SVHN digits. This behaviour is somewhat expected since the
information needed to generate an MNIST digit is typically subsumed within an SVHN digit (e.g.
there is little style information associated with MNIST), making generation from SVHN to MNIST
easier, and from MNIST to SVHN more difficult. Moreover, we also hypothesise that observing
MNIST during training provides greater clustering in the latent space, which seems to aid cross
generating SVHN digits. We provide additional t-SNE plots in Appendix H.3 to justify this claim.

For CUB we can see in Figure 6 that MEME consistently obtains higher correlations than MVAE
across all supervision rates, and higher than MMVAE in the fully supervised case. Generally, cross-
generating images yields higher correlation values, possibly due to the difficulty in generating se-
mantically meaningful text with relatively simplistic convolutional architectures. We would like
to highlight that partially observing captions typically leads to poorer performance when cross-

2We note that some of the reported results of MMVAE in our experiments do not match those seen in the
original paper, please visit Appendix I for more information.
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Figure 5: Coherence between MNIST and SVHN (Left) and SVHN and MNIST (Right). Shaded area indicates
one-standard deviation of runs with different seeds.

Figure 6: Correlation between Image and Sentence (Left) and Sentence and Image (Right). Shaded area indi-
cates one-standard deviation of runs with different seeds.

generating captions. We hypothesise that is due to the difficulty in generating the captions and the
fact there is a limited amount of captions data in this setting.

Latent Accuracy To gauge the quality of the learnt representations we follow previous work (Hig-
gins et al., 2017; Kim & Mnih, 2018; Shi et al., 2019; Sutter et al., 2021) and fit a linear classifier
that predicts the input digit from the latent samples. The accuracy of predicting the input digit using
this classifier indicates how well the latents can be separated in a linear manner.

In Figure 7, we plot the latent accuracy on MNIST and SVHN against the fraction of observation.
We can see that MEME outperforms MVAE on both MNIST and SVHN under the fully-observed
scheme (i.e. when observation fractions is 1.0). We can also notice that the latent accuracy of
MVAE is rather lopsided, with the performance on MNIST to be as high as 0.88 when only 1/16 of
the data is observed, while SVHN predictions remain almost random even when all data are used;
this indicates that MVAE relies heavily on MNIST to extract digit information. On the other hand,
MEME’s latent accuracy observes a steady increase as observation fractions grow in both modali-
ties. It is worth noting that both models performs better on MNIST than SVHN in general—this is
unsurprising as it is easier to disentangle digit information from MNIST, however our experiments
here show that MEME does not completely disregard the digits in SVHN like MVAE does, resulting
in more balanced learned representations. It is also interesting to see that MVAE obtains a higher
latent accuracy than MEME for low supervision rates. This is due to MVAE learning to construct
representations for each modality in a completely separate sub-space in the latent space, we provide
a t-SNE plot to demonstrate this in Appendix H.1.

Ablation Studies To study the effect of modelling and data choices on performance, we perform
two ablation studies: one varying the number of pseudo-samples for the prior, and the other evalu-
ating how well the model leverages partially observed data over fully observed data. We find that
performance degrades, as expected, with fewer pseudo-samples, and that the model trained with
additional partially observed data does indeed improve. See Appendix J for details.

7



Published as a conference paper at ICLR 2022

Figure 7: Latent accuracies for MNIST and SVHN (Left) and SVHN and MNIST (Right). Shaded area indicates
one-standard deviation of runs with different seeds.

4.2 EVALUATING RELATEDNESS

Now that we have established that the representation learned by MEME contains rich class infor-
mation from the inputs, we also wish to analyse the relationship between the encodings of different
modalities by studying their “relatedness”, i.e. semantic similarity. The probabilistic nature of the
learned representations suggests the use of probability distance functions as a measure of related-
ness, where a low distance implies closely related representations and vice versa.

In the following experiments we use the 2-Wasserstein distance, W2, a probability metric with a
closed-form expression for Gaussian distributions (see Appendix F for more details). Specifically,
we compute dij = W2( q(z|si) ‖ q(z|tj) ), where q(z|si) and q(z|tj) are the individual encoders,
for all combination of pairs {si, tj} in the mini-batch, i.e {si, tj}, for i, j ∈ {1 . . . ,M} where M
is the number of elements in the mini-batch.

General Relatedness In this experiment we wish to highlight the disparity in measured relat-
edness between paired vs. unpaired multimodal data. To do so, we plot dij on a histogram and
color-code the histogram by whether the corresponding data pair {si, tj} shows the same concept,
e.g. same digit for MNIST-SVHN and same image-caption pair for CUB. Ideally, we should observe
smaller distances between encoding distributions for data pairs that are related, and larger for ones
that are not.

To investigate this, we plot dij on a histogram for every mini-batch; ideally we should see higher
densities at closer distances for points that are paired, and higher densities at further distances for
unpaired points. In Figure 8, we see that MEME (left) does in fact yields higher mass at lower

Figure 8: Histograms of Wassertein distance for SVHN and MNIST (Top) and CUB (Bottom): MEME (Left),
MMVAE (middle) and MVAE (Right). Blue indicates unpaired samples and orange paired samples. We expect
to see high densities of blue at further distances and visa-versa for orange.
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distance values for paired multimodal samples (orange) than it does for unpaired ones (blue). This
effect is not so pronounced in MMVAE and not present at all in MVAE. This demonstrates MEME’s
capability of capturing relatedness between multimodal samples in its latent space, and the quality
of its representation.

Class-contextual Relatedness To offer more insights on the relatedness of representations within
classes, we construct a distance matrix K ∈ R10×10 for the MNIST-SVHN dataset, where each
element Ki,j corresponds to the average W2 distance between encoding distributions of class i of
MNIST and j of SVHN. A perfect distance matrix will consist of a diagonal of all zeros and positive
values in the off-diagonal.

See the class distance matrix in Figure 9 (top row), generated with models trained on fully observed
multimodal data. It is clear that our model (left) produces much lower distances on the diagonal, i.e.
when input classes for the two modalities are the same, and higher distances off diagonal where input
classes are different. A clear, lower-valued diagonal can also be observed for MMVAE (middle),
however it is less distinct compared to MEME, since some of the mismatched pairs also obtains
smaller values. The distance matrix for MVAE (right), on the other hand, does not display a diagonal
at all, reflecting poor ability to identify relatedness or extract class information through the latent.

To closely examine which digits are considered similar by the model, we construct dendrograms to
visualise the hierarchical clustering of digits by relatedness, as seen in Figure 9 (bottom row). We see
that our model (left) is able to obtain a clustering of conceptually similar digits. In particular, digits
with smoother writing profile such as 3, 5, 8, along with 6 and 9 are clustered together (right hand
side of dendrogram), and the digits with sharp angles, such as 4 and 7 are clustered together. The
same trend is not observed for MMVAE nor MVAE. It is also important to note the height of each
bin, where higher values indicate greater distance between clusters. Generally the clusters obtained
in MEME are further separated for MMVAE, demonstrating more distinct clustering across classes.

Figure 9: Distance matrices for KL divergence between classes for SVHN and MNIST (Top) and dendrogram
(Bottom) for: Ours (Left), MMVAE (middle) and MVAE (Right).

5 DISCUSSION

Here we have presented a method which faithfully deals with partially observed modalities in
VAEs. Through leveraging recent advances in semi-supervised VAEs, we construct a model which is
amenable to multi-modal learning when modalities are partially observed. Specifically, our method
employs mutual supervision by treating the uni-modal encoders individually and minimizing a KL
between them to ensure embeddings for are pertinent to one another. This approach enables us to
successfully learn a model when either of the modalites are partially observed. Furthermore, our
model is able to naturally extract an indication of relatedness between modalities. We demonstrate
our approach on the MNIST-SVHN and CUB datasets, where training is performed on a variety of
different observations rates.
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Ethics Statement We believe there are no inherent ethical concerns within this work, as all
datasets and motivations do not include or concern humans. As with every technological advance-
ment there is always the potential for miss-use, for this work though, we can not see a situation
where this method may act adversarial to society. In fact, we believe that multi-modal representa-
tion learning in general holds many benefits, for instance in language translation which removes the
need to translate to a base language (normally English) first.
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A DERIVATION OF THE OBJECTIVE

The variational lower bound for the case when s and t are both observed, following the notation in
Figure 2, derives as:

log pθ,ψ(t, s) = log

∫
z

pθ,ψ(t, s, z)dz

≥
∫

z

log
pθ,ψ(s, t, z)

qφ,ϕ(z|t, s)
qφ,ϕ(z|t, s)dz

Following Joy et al. (2021), assuming s |= t|z and applying Bayes rule we have

qφ,ϕ(z|t, s) =
qφ(z|s)qϕ(t|z)

qφ,ϕ(t|s)
, where qφ,ϕ(t|s) =

∫
qφ(z|s)qϕ(t|z)dz

which can be substituted into the lower bound to obtain

log pθ,ψ(t, s) ≥
∫

z

log
pθ,ψ(s, t, z)qφ,ϕ(t|s)

qφ(z|s)qϕ(t|z)

qφ(z|s)qϕ(t|z)

qφ,ϕ(t|s)
dz

= Eqφ(z|s)

[
qϕ(t|z)

qφ,ϕ(t|s)
log

pθ(s|z)pψ(z|t)

qφ(z|s)qϕ(t|z)

]
+ log qφ,ϕ(t|s) + log p(t). (6)

B EFFICIENT GRADIENT ESTIMATION

Given the objective in (6), note that the first term is quite complex, and requires estimating a weight
ratio that involves an additional integral for qϕ,φ(t | s). This has a significant effect, as the naive
Monte-Carlo estimator of

∇φ,ϕEqφ(z|s)

[
qϕ(t | z)

qϕ,φ(t | s)
log

pθ(s | z)pψ(z | t)

qφ(z | s)qϕ(t | z)

]
= Ep(ε)

[(
∇φ,ϕ

qϕ(t | z)

qϕ,φ(t | s)

)
log

pθ(s | z)pψ(z | t)

qφ(z | s)qϕ(t | z)
+

qϕ(t | z)

qϕ,φ(t | s)
∇φ,ϕ log

pθ(s | z)pψ(z | t)

qφ(z | s)qϕ(t | z)

]
(7)

can be very noisy, and prohibit learning effectively. To mitigate this, we note that the first term in (7)
computes gradients for the encoder parameters (φ, ϕ) through a ratio of probabilities, whereas the
second term does so through log probabilities. Numerically, the latter is a lot more stable to learn
from than the former, and so we simply drop the first term in (7) by employing a stop gradient

on the ratio qϕ(t|z)
qϕ,φ(t|s) . We further support this change with empirical results (cf. Figure 10) that show

how badly the signal-to-noise ratio (SNR) is affected for the gradients with respect to the encoder
parameters. We further note that Joy et al. (2021) perform a similar modification also motivated
by an empirical study, but where they detach the sampled z—we find that our simplification that
detaches the weight itself works more stably and effectively.

Figure 10: SNR for parameters (φ, left) and (ϕ, right). The blue curve denotes the simplified estimator using
stop gradient, and the orange curve indicates the full estimator in (7). Higher values leads to improved learning.
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C WEIGHT SHARING

Another critical issue with naı̈vely training using (6), is that in certain situations qϕ(t | z) struggles
to learn features (typically style) for t, consequently making it difficult to generate realistic samples.
This is due to the information entering the latent space only coming from s, which contains all of
the information needed to reconstruct s, but does not necessarily contain the information needed to
reconstruct a corresponding t. Consequently, the term pθ(s | z) will learn appropriate features (like
a standard VAE decoder), but the term qϕ(t | z) will fail to do so. In situations like this, where the
information in t is not subsumed by the information in s, there is no way for the model to know
how to reconstruct a t. Introducing weight sharing into the bidirectional objective (2) removes this
issue, as there is equal opportunity for information from both modalities to enter the latent space,
consequently enabling appropriate features to be learned in the decoders pθ(s | z) and pϕ(t | z),
which subsequently allow cross generations to be performed.

Furthermore, we also observe that when training with (2) we are able to obtain much more balanced
likelihoods Table 2. In this setting we train two models separately using (6) with s = MNIST
and SVHN and then with t = SVHN and s = MNIST respectively. At test time, we then ‘flip’
the modalities and the corresponding networks, allowing us to obtain marginal likelihoods in each
direction. Clearly we see that we only obtain reasonable marginal likelihoods in the direction for
which we train. Training with the bidirectional objective completely removes this deficiency, as we
now introduce a balance between the modalities.

Table 2: Marginal likelihoods.

Train Direction

Test Direction s = M, t = S s = S, t = M Bi

s = M, t = S −14733.6 −40249.9flip −14761.3
s = S, t = M −428728.7flip −11668.1 −11355.4

D REUSING APPROXIMATE POSTERIOR MC SAMPLE

When approximating qϕ,φ(t | s) through MC sampling, we find that it is essential for numerical
stability to include the sample from the approximate posterior. Before considering why, we must
first outline the numerical implementation of qϕ,φ(t | s), which for K samples z1:K ∼ qφ(z | s) is
computed using the LogSumExp trick as:

log qϕ,φ(t | s) ≈ log

K∑
k=1

exp log qϕ(t|zk), (8)

where the ratio qϕ(t|z)
qϕ,φ(t|s) is computed as exp{log qϕ(t | z) − log qϕ,φ(t | s)}. Given that the

LogSumExp trick is defined as:

log

N∑
n=1

expxn = x∗ + log

N∑
n=1

exp(xn − x∗), (9)

where x∗ = max{x1, . . . , xN}. The ratio will be computed as

qϕ(t | z)

qϕ,φ(t | s)
= exp{log qϕ(t | z)− log qϕ(t|z∗)− log

K∑
k=1

exp[log qϕ(t|zk)− log qϕ(t|z∗)]},

(10)

where z∗ = arg maxz1:K
log qϕ(t|zk). For numerical stability, we require that log qϕ(t | z) 6�

log qϕ(t|z∗), otherwise the computation may blow up when taking the exponent. To enforce this,
we need to include the sample z into the LogSumExp function, doing so will cause the first two terms
to either cancel if z = z∗ or yield a negative value, consequently leading to stable computation when
taking the exponent.
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E EXTENSION BEYOND THE BI-MODAL CASE

Here we offer further detail on how MEME can be extended beyond the bi-modal case, i.e. when the
number of modalitiesM > 2. Note that the central thesis in MEME is that the evidence lower bound
(ELBO) offers an implicit way to regularise different representations if viewed from the posterior-
prior perspective, which can be used to build effective multimodal DGMs that are additionally ap-
plicable to partially-observed data. In MEME, we explore the utility of this implicit regularisation
in the simplest possible manner to show that a direct application of this to the multi-modal setting
would involve the case where M = 2.

The way to extend, say for M = 3, involves additionally employing an explicit combination for two
modalities in the prior (instead of just 1). This additional combination could be something like a
mixture or product, following from previous approaches. More formally, if we were to denote the
implicit regularisation between posterior and prior as Ri(., .), and an explicit regularisation function
Re(., .), and the three modalities as m1,m2, and m3, this would mean we would compute

1

3
[Ri(m1, Re(m2,m3)) +Ri(m2, Re(m1,m3)) +Ri(m3, Re(m1,m2))] , (11)

assuming that Re was commutative, as is the case for products and mixtures. There are indeed more
terms to compute now compared to M = 2, which only needs Ri(m1,m2), but note that Ri is still
crucial—it does not diminish because we are additionally employing Re.

As stated in prior work(Suzuki et al., 2016; Wu & Goodman, 2018; Shi et al., 2019), we follow the
reasoning that the actual number of modalities, at least when considering embodied perception, is
not likely to get much larger, so the increase in number of terms, while requiring more computa-
tion, is unlikely to become intractable. Note that prior work on multimodal VAEs also suffer when
extending the number of modalities in terms of the number of paths information flows through.

We do not explore this setting empirically as our priary goal is to highlight the utility of this implicit
regularisation for multi-modal DGMs, and its effectiveness at handling partially-observed data.

F CLOSED FORM EXPRESSION FOR WASSERTEIN DISTANCE BETWEEN TWO
GAUSSIANS

The Wassertein-2 distance between two probability measures µ and ν on Rn is defined as

W2(µ, ν) := inf E(||X − Y ||22)
1
2 ,

with X ∼ µ and Y ∼ ν. Given µ = N (m1,Σ1) and ν = N (m2,Σ2), the 2-Wassertein is then
given as

d2 = ||m1 +m2||22 + Tr(Σ1 + Σ2 − 2(Σ
1
2
1 Σ2Σ

1
2
1 )

1
2 ).

For a detailed proof please see (Givens & Shortt, 2002).

G CANONICAL CORRELATION ANALYSIS

Following Shi et al. (2019); Massiceti et al. (2018), we report cross-coherence scores for CUB
using Canonical Correlation Analysis (CCA). Given paired observations x1 ∈ Rn1 and x2 ∈ Rn2 ,
CCA learns projection weights WT

1 ∈ Rn1×k and WT
2 ∈ Rn2×k which minimise the correlation

between the projections WT
1 x1 and WT

2 x2. The correlations between a data pair {x̃1, x̃2} can thus
be calculated as

corr(x̃1, x̃2) =
φ(x̃1)Tφ(x̃2)

||φ(x̃1)||2||φ(x̃2)||2
(12)

where φ(xn) = WT
n x̃n − avg(WT

n x̃n).

Following Shi et al. (2019), we use feature extractors to pre-process the data. Specifically, features
for image data are generated from an off-the-shelf ResNet-101 network. For text data, we first fit
a FastText model on all sentences, resulting in a 300-d projection for each word Bojanowski et al.
(2017), the representation is then computed as the average over the words in the sentence.
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Figure 11: MNIST→ SVHN (Left) and SVHN→MNIST (Right), for the fully observed case.

Figure 12: MNIST→ SVHN (Left) and SVHN→MNIST (Right), when SVHN is observed 50% of the time.

Figure 13: MNIST→ SVHN (Left) and SVHN→MNIST (Right), when MNIST is observed 50% of the time.
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Figure 14: MNIST→ SVHN (Left) and SVHN→MNIST (Right), when SVHN is observed 25% of the time.

Figure 15: MNIST→ SVHN (Left) and SVHN→MNIST (Right), when MNIST is observed 25% of the time.

Figure 16: MNIST → SVHN (Left) and SVHN → MNIST (Right), when SVHN is observed 12.5% of the
time.
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Figure 17: MNIST → SVHN (Left) and SVHN → MNIST (Right), when MNIST is observed 12.5% of the
time.
Table 3: Coherence Scores for MNIST→ SVHN (Top) and for SVHN→MNIST (Bottom). Subscript indicates
which modality is always present during training, f indicates the percentage of matched samples. Higher is
better.

MNIST→ SVHN

Model f = 1.0 f = 0.5 f = 0.25 f = 0.125 f = 0.0625

MEMESVHN 0.625 ± 0.007 0.551 ± 0.008 0.323 ± 0.025 0.172 ± 0.016 0.143 ± 0.009
MMVAESVHN 0.581 ± 0.008 - - - -

MVAESVHN 0.123 ± 0.003 0.110 ± 0.014 0.112 ± 0.005 0.105 ± 0.005 0.105 ± 0.006

MEMEMNIST 0.625 ± 0.007 0.572 ± 0.003 0.485 ± 0.013 0.470 ± 0.009 0.451 ± 0.011
MMVAEMNIST 0.581 ± 0.008 - - - -

MVAEMNIST 0.123 ± 0.003 0.111 ± 0.007 0.112 ± 0.013 0.116 ± 0.012 0.116 ± 0.005

MEMESPLIT 0.625 ± 0.007 0.625 ± 0.008 0.503 ± 0.008 0.467 ± 0.013 0.387 ± 0.010
MVAESPLIT 0.123 ± 0.003 0.108 ± 0.005 0.101 ± 0.005 0.101 ± 0.001 0.101 ± 0.002

SVHN→MNIST

Model f = 1.0 f = 0.5 f = 0.25 f = 0.125 f = 0.0625

MEMESVHN 0.752 ± 0.004 0.726 ± 0.006 0.652 ± 0.008 0.557 ± 0.018 0.477 ± 0.012
MMVAESVHN 0.735 ± 0.010 - - - -

MVAESVHN 0.498 ± 0.100 0.305 ± 0.011 0.268 ± 0.010 0.220 ± 0.020 0.188 ± 0.012

MEMEMNIST 0.752 ± 0.004 0.715 ± 0.003 0.603 ± 0.018 0.546 ± 0.012 0.446 ± 0.008
MMVAEMNIST 0.735 ± 0.010 - - - -

MVAEMNIST 0.498 ± 0.100 0.365 ± 0.014 0.350 ± 0.008 0.302 ± 0.015 0.249 ± 0.014

MEMESPLIT 0.752 ± 0.004 0.718 ± 0.002 0.621 ± 0.007 0.568 ± 0.014 0.503 ± 0.001
MVAESPLIT 0.498 ± 0.100 0.338 ± 0.013 0.273 ± 0.003 0.249 ± 0.019 0.169 ± 0.001

H ADDITIONAL RESULTS

H.1 MVAE LATENT ACCURACIES

The superior accuracy in latent accuracy when classifying MNIST from MVAE is due to a com-
plete failure to construct a joint representation, which is evidenced in its failure to perform cross-
generation. Failure to construct joint representations aids latent classification, as the encoders just
learn to construct representations for single modalities, this then provides more flexibility and hence
better classification. In Figure 19, we further provide a t-SNE plot to demonstrate that MVAE places
representations for MNIST modality in completely different parts of the latent space to SVHN. Here
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Figure 18: MEME cross-modal generations for CUB.

we can see that representations for each modality are completely separated, meaning that there is
no shared representation. Furthermore, MNIST is well clustered, unlike SVHN. Consequently it
is far easier for the classifier to predict the MNIST digit as the representations do not contain any
information associated with SVHN.
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Table 4: Latent Space Linear Digit Classification.

MNIST

Model 1.0 0.5 0.25 0.125 0.0625

MEMESVHN 0.908 ± 0.007 0.881 ± 0.006 0.870 ± 0.007 0.815 ± 0.005 0.795 ± 0.010
MMVAESVHN 0.886 ± 0.003 - - - -

MVAESVHN 0.892 ± 0.005 0.895 ± 0.003 0.890 ± 0.003 0.887 ± 0.004 0.880 ± 0.003

OursMNIST 0.908 ± 0.007 0.882 ± 0.003 0.844 ± 0.003 0.824 ± 0.006 0.807 ± 0.005
MMVAEMNIST 0.886 ± 0.003 - - - -

MVAEMNIST 0.892 ± 0.005 0.895 ± 0.002 0.898 ± 0.004 0.896 ± 0.002 0.895 ± 0.002

MEMESPLIT 0.908 ± 0.007 0.914 ± 0.003 0.893 ± 0.005 0.883 ± 0.006 0.856 ± 0.003
MVAESPLIT 0.892 ± 0.005 0.898 ± 0.005 0.895 ± 0.001 0.894 ± 0.001 0.898 ± 0.001

SVHN

Model 1.0 0.5 0.25 0.125 0.0625

MEMESVHN 0.648 ± 0.012 0.549 ± 0.008 0.295 ± 0.025 0.149 ± 0.006 0.113 ± 0.003
MMVAESVHN 0.499 ± 0.045 - - - -

MVAESVHN 0.131 ± 0.010 0.106 ± 0.008 0.107 ± 0.003 0.105 ± 0.005 0.102 ± 0.001

OursMNIST 0.648 ± 0.012 0.581 ± 0.008 0.398 ± 0.029 0.384 ± 0.017 0.362 ± 0.018
MMVAEMNIST 0.499 ± 0.045 - - - -

MVAEMNIST 0.131 ± 0.010 0.106 ± 0.005 0.106 ± 0.003 0.107 ± 0.005 0.101 ± 0.005

MEMESPLIT 0.648 ± 0.012 0.675 ± 0.004 0.507 ± 0.003 0.432 ± 0.011 0.316 ± 0.020
MVAESPLIT 0.131 ± 0.010 0.107 ± 0.003 0.109 ± 0.003 0.104 ± 0.007 0.100 ± 0.008

Table 5: Correlation Values for CUB cross generations. Higher is better.

Image→ Captions

Model GT f = 1.0 f = 0.5 f = 0.25 f = 0.125

MEMEImage 0.106 ± 0.000 0.064 ± 0.011 0.042 ± 0.005 0.026 ± 0.002 0.029 ± 0.003
MMVAEImage 0.106 ± 0.000 0.060 ± 0.010 - - -

MVAEImage 0.106 ± 0.000 -0.002 ± 0.001 -0.000 ± 0.004 0.001 ± 0.004 -0.001 ± 0.005

MEMECaptions 0.106 ± 0.000 0.064 ± 0.011 0.062 ± 0.006 0.048 ± 0.004 0.052 ± 0.002
MMVAECaptions 0.106 ± 0.000 0.060 ± 0.010 - - -

MVAECaptions 0.106 ± 0.000 -0.002 ± 0.001 -0.000 ± 0.004 0.000 ± 0.003 0.001 ± 0.002

MEMESPLIT 0.106 ± 0.000 0.064 ± 0.011 0.046 ± 0.005 0.031 ± 0.006 0.027 ± 0.005
MVAESPLIT 0.106 ± 0.000 -0.002 ± 0.001 0.000 ± 0.003 0.000 ± 0.005 -0.001 ± 0.003

Caption→ Image

Model GT f = 1.0 f = 0.5 f = 0.25 f = 0.125

MEMEImage 0.106 ± 0.000 0.074 ± 0.001 0.058 ± 0.002 0.051 ± 0.001 0.046 ± 0.004
MMVAEImage 0.106 ± 0.000 0.058 ± 0.001 - - -

MVAEImage 0.106 ± 0.000 -0.002 ± 0.001 -0.002 ± 0.000 -0.002 ± 0.001 -0.001 ± 0.001

OursCaptions 0.106 ± 0.000 0.074 ± 0.001 0.059 ± 0.003 0.050 ± 0.001 0.053 ± 0.001
MMVAECaptions 0.106 ± 0.000 0.058 ± 0.001 - - -

MVAECaptions 0.106 ± 0.000 0.002 ± 0.001 -0.001 ± 0.002 -0.003 ± 0.002 -0.002 ± 0.001

MEMESPLIT 0.106 ± 0.000 0.074 ± 0.001 0.061 ± 0.002 0.047 ± 0.003 0.049 ± 0.003
MVAESPLIT 0.106 ± 0.000 -0.002 ± 0.001 -0.002 ± 0.002 -0.002 ± 0.001 -0.002 ± 0.001

H.2 GENERATIVE CAPABILITY

We report the mutual information between the parameters ω of a pre-trained classifier and the labels
y for a corresponding reconstruction x. The mutual information gives us an indication of the amount
of information we would gain about ω for a label y given x, this provides an indicator to how out-
of-distribution x is. If x is a realistic reconstruction, then there will be a low MI, conversely, an
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Figure 19: T-SNE plot indicating the complete failure of MVAE to construct joint representations. s indicates
SVHN (low transparency), m indicates MNIST (high transparency).

un-realistic x will manifest as a high MI as there is a large amount of information to be gained about
ω. The MI for this setting is given as

I(y, ω | x,D) = H[p(y | x,D)]− Ep(ω|D) [H[p(y | x, ω)]] .

Rather than using dropout Gal (2016); Smith & Gal (2018) which requires an ensemble of multiple
classifiers, we instead replace the last layer with a sparse variational GP. This allows us to esti-
mate p(y | x,D) =

∫
p(y | x, ω)p(ω | D)dω using Monte Carlo samples and similarly estimate

Ep(ω|D) [H[p(y | x, ω)]]. We display the MI scores in Table 6, where we see that our model is able
to obtain superior results.

Table 6: Mutual Information Scores. Lower is better.

MNIST

Model 1.0 0.5 0.25 0.125 0.0625

OursSVHN 0.075 ± 0.002 0.086 ± 0.003 0.101 ± 0.002 0.102 ± 0.004 0.103 ± 0.001
MMVAESVHN 0.105 ± 0.004 - - - -

MVAESVHN 0.11 ± 0.00551 0.107 ± 0.007 0.106 ± 0.004 0.106 ± 0.012 0.142 ± 0.007

OursMNIST 0.073 ± 0.002 0.087 ± 0.001 0.101 ± 0.001 0.099 ± 0.001 0.104 ± 0.002
MMVAEMNIST 0.105 ± 0.004 - - - -

MVAEMNIST 0.11 ± 0.00551 0.102 ± 0.00529 0.1 ± 0.00321 0.1 ± 0.0117 0.0927 ± 0.00709

MEMESPLIT 0.908 ± 0.007 0.914 ± 0.003 0.893 ± 0.005 0.883 ± 0.006 0.856 ± 0.003
MVAESPLIT 0.11 ± 0.00551 0.104 ± 0.006 0.099 ± 0.003 0.1 ± 0.0117 0.098 ± 0.005

SVHN

Model 1.0 0.5 0.25 0.125 0.0625

OursSVHN 0.036 ± 0.001 0.047 ± 0.002 0.071 ± 0.003 0.107 ± 0.007 0.134 ± 0.003
MMVAESVHN 0.042 ± 0.001 - - - -

MVAESVHN 0.163 ± 0.003 0.166 ± 0.010 0.165 ± 0.003 0.164 ± 0.004 0.176 ± 0.004

OursMNIST 0.036 ± 0.001 0.048 ± 0.001 0.085 ± 0.006 0.111 ± 0.004 0.142 ± 0.005
MMVAEMNIST 0.042 ± 0.001 - - - -

MVAEMNIST 0.163 ± 0.003 0.175 ± 0.00551 0.17 ± 0.0102 0.174 ± 0.012 0.182 ± 0.00404

MEMESPLIT 0.648 ± 0.012 0.675 ± 0.004 0.507 ± 0.003 0.432 ± 0.011 0.316 ± 0.020
MVAESPLIT 0.163 ± 0.003 0.165 ± 0.01 0.172 ± 0.015 0.173 ± 0.013 0.179 ± 0.005

H.3 T-SNE PLOTS WHEN PARTIALLY OBSERVING BOTH MODALITIES

In Figure 20 we can see that partially observing MNIST leads to less structure in the latent space.
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Figure 20: f = 0.25, Left) t-SNE when partially observing MNIST. Right) t-SNE when partially observing
SVHN.

Table 7: Coherence Scores for MMVAE using Laplace posterior and prior.

MNIST SVHN
91.8% 65.2%

I MMVAE BASELINE WITH LAPLACE POSTERIOR AND PRIOR

The difference in results between our implementation of MVAE and the ones in the paper (Shi
et al., 2019), is becuase we restrict MEME to use Gaussian distributions for the posterior and prior,
and therefore we adopt Gaussian posteriors and priors for all three models to ensure like-for-like
comparison. Better results for MMVAE can be obtained by using Laplace posteriors and priors,
and In Table 7 we display coherence scores using our implementation of MMVAE using a Laplace
posterior and prior. Our implementation is inline with the results reported in Shi et al. (2019),
indicating that the baseline for MMVAE is accurate.

J ABLATION STUDIES

Here we carry out two ablation studies to test the hypotheses: 1) How sensitive is the model to the
number of pseudo samples in λ and 2) What is the effect of training the model using only paired
data for a given fraction of the dataset.

J.1 SENSITIVITY TO NUMBER OF PSEUDO-SAMPLES

In Figure 21 we plot results where the number of pseudo samples is varied for different obser-
vation rates. Ideally we expect to see the results decrease in their performance as the number of
pseudo-samples is minimised. This is due to the number of components being present in the mixture
pλt(z) = 1

N

∑N
i=1 pψ(z | ut

i ), also being decreased, thus reducing the its ability to approximate the
true prior p(z) =

∫
t
pψ(z | t)p(t)dt. As expected lower observation rates are more sensitive, due to

a higher dependence on the prior approximation, and a higher number of pseudo samples typically
leads to better results.

J.2 TRAINING USING ONLY PAIRED DATA

Here we test the models ability to leverage partially observed data to improve the results. If the
model is successfully able to leverage the partially observed samples, then we should see a decrease
in the efficacy if we train the model using only paired samples, i.e. a model trained with 25% paired
and 75% partially observed should perform improve the results over a model trained with only the
25% paired data. In other words we omit, the first two partially observed terms in (5), discardingDs

and Dt. In Figure 22 we can see that the model is able to use the partially observed modalities to
improve its results.
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Figure 21: How performance varies for different numbers of psuedo samples. Number of pseudo samples
ranges from 1 to 100 on the x axis.

Figure 22: How performance varies when training using only a fraction of the partially observed data.
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K TRAINING DETAILS

The architechtures are very simple and cean easily be implemented in popular deep learning frame-
works such as Pytorch and Tensorflow. However, we do provide a release of the codebase at the
following location: https://github.com/thwjoy/meme.

MNIST-SVHN We provide the architectures used in Table 8b and Table 8a. We used the Adam
optimizer with a learning rate of 0.0005 and beta values of (0.9, 0.999) for 100 epochs, training
consumed around 2Gb of memory.

CUB We provide the architectures used in Table 8c and Table 8d. We used the Adam optimizer
with a learning rate of 0.0001 and beta values of (0.9, 0.999) for 300 epochs, training consumed
around 3Gb of memory.

Encoder Decoder

Input ∈ R1x28x28 Input ∈ RL
FC. 400 ReLU FC. 400 ReLU
FC. L, FC. L FC. 1 x 28 x 28 Sigmoid

(a) MNIST dataset.
Encoder

Input ∈ R1x28x28

4x4 conv. 32 stride 2 pad 1 & ReLU
4x4 conv. 64 stride 2 pad 1 & ReLU
4x4 conv. 128 stride 2 pad 1 & ReLU
4x4 conv. L stride 1 pad 0, 4x4 conv. L stride 1 pad 0

Decoder

Input ∈ RL
4x4 upconv. 128 stride 1 pad 0 & ReLU
4x4 upconv. 64 stride 2 pad 1 & ReLU
4x4 upconv. 32 stride 2 pad 1 & ReLU
4x4 upconv. 3 stride 2 pad 1 & Sigmoid

(b) SVHN dataset.
Encoder Decoder

Input ∈ R2048 Input ∈ RL
FC. 1024 ELU FC. 256 ELU
FC. 512 ELU FC. 512 ELU
FC. 256 ELU FC. 1024 ELU
FC. L, FC. L FC. 2048

(c) CUB image dataset.
Encoder

Input ∈ R1590

Word Emb. 256
4x4 conv. 32 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 conv. 64 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 conv. 128 stride 2 pad 1 & BatchNorm2d & ReLU
1x4 conv. 256 stride 1x2 pad 0x1 & BatchNorm2d & ReLU
1x4 conv. 512 stride 1x2 pad 0x1 & BatchNorm2d & ReLU
4x4 conv. L stride 1 pad 0, 4x4 conv. L stride 1 pad 0

Decoder

Input ∈ RL
4x4 upconv. 512 stride 1 pad 0 & ReLU
1x4 upconv. 256 stride 1x2 pad 0x1 & BatchNorm2d & ReLU
1x4 upconv. 128 stride 1x2 pad 0x1 & BatchNorm2d & ReLU
4x4 upconv. 64 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 upconv. 32 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 upconv. 1 stride 2 pad 1 & ReLU
Word Emb.T 1590

(d) CUB-Language dataset.
Table 8: Encoder and decoder architectures.
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