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SUMMARY 10

The pseudo-marginal algorithm is a variant of the Metropolis–Hastings algorithm which sam-
ples asymptotically from a probability distribution when it is only possible to estimate unbias-
edly an unnormalized version of its density. Practically, one has to trade-off the computational
resources used to obtain this estimator against the asymptotic variances of the ergodic averages
obtained by the pseudo-marginal algorithm. Recent works optimizing this trade-off rely on some 15

strong assumptions which can cast doubts over their practical relevance. In particular, they all
assume that the distribution of the additive error in the log-likelihood estimator is independent of
the parameter value at which it is evaluated. Under weak regularity conditions we show here that,
as the number of data points tends to infinity, a space-rescaled version of the pseudo-marginal
chain converges weakly towards another pseudo-marginal chain for which this assumption in- 20

deed holds. A study of this limiting chain allows us to provide parameter dimension-dependent
guidelines on how to optimally scale a normal random walk proposal and the number of Monte
Carlo samples for the pseudo-marginal method in the large sample regime. This complements
and validates currently available results.

Some key words: Asymptotic posterior normality; Intractable likelihood; Large sample theory; Metropolis–Hastings 25

algorithm; Random measure; Weak convergence.

1. INTRODUCTION

The pseudo-marginal Metropolis–Hastings algorithm is a variant of the popular Metropolis–
Hastings algorithm where an unnormalized version of the target density is replaced by a non-
negative unbiased estimate. The algorithm first appeared in the physics literature (Lin et al., 2000) 30

and has become very popular in Bayesian statistics as many intractable likelihood functions can
be estimated unbiasedly using importance sampling or particle filters (Beaumont, 2003; Andrieu
& Roberts, 2009; Andrieu et al., 2010).

Replacing the true likelihood in the Metropolis-Hastings algorithm with an estimate results in
a trade-off: the asymptotic variance of an ergodic average of a pseudo-marginal chain typically 35

decreases as the number of samples, N , used to obtain the likelihood estimator increases, as es-
tablished by Andrieu & Vihola (2016) for importance sampling estimators; however, this comes
at the cost of a higher computational burden. An important task in practice is thus to choose N

C© 2017 Biometrika Trust
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such that the computational resources required to obtain a given asymptotic variance are mini-
mized. This problem has already been investigated by Pitt et al. (2012), Doucet et al. (2015) and40

Sherlock et al. (2015) where guidelines have been obtained under various assumptions either
on the proposal (Pitt et al., 2012; Doucet et al., 2015) or on the proposal and target distribution
(Sherlock et al., 2015). Additionally, all these contributions make the assumption that the distri-
bution of the additive noise introduced by the log-likelihood estimator is a Gaussian of variance
inversely proportional to N , its mean and variance being independent of the parameter value at45

which it is evaluated. A similar assumption has also been used by Nemeth et al. (2016) for the
analysis of a related algorithm. This assumption can cast doubts over the practical relevance of
the guidelines provided in these contributions. The normal noise assumption was motivated by
Pitt et al. (2012), Doucet et al. (2015) and Sherlock et al. (2015) by the fact that the error in the
log-likelihood estimator for state-space models computed using a particle filter is asymptotically50

normal of variance proportional to γ as T →∞ with N = T/γ (Bérard et al., 2014) while the
constant variance assumption over the parameter space was motivated in Pitt et al. (2012) and
Doucet et al. (2015) by the fact that the posterior typically concentrates as T increases. However,
no formal argument justifying why the pseudo-marginal chain would behave as a Markov chain
for which these assumptions hold has been provided.55

We carry out here an original weak convergence analysis of the pseudo-marginal algorithm
in a Bayesian setting which not only justifies rigorously these assumptions but also allows us
to obtain novel guidelines on how to optimally tune this algorithm as a function of the parame-
ter dimension d . Weak convergence techniques have become very popular in the Markov chain
Monte Carlo literature since their introduction in the seminal paper of Roberts et al. (1997). To60

the recent exception of Deligiannidis et al. (2015), all these analyses have been performed in
the asymptotic regime where the parameter dimension d →∞. Results of this type typically
require to make strong structural assumptions on the target distribution such as having d inde-
pendent and identically distributed components as in Sherlock et al. (2015). We analyze here
the pseudo-marginal scheme in the large sample asymptotic regime where the number of data65

points T goes to infinity while d is fixed. When the posterior distribution concentrates towards
a normal, we show that a space-rescaled version of the pseudo-marginal chain converges to a
pseudo-marginal chain targeting a normal distribution for which the additive error, or noise, in
the log-likelihood estimator is indeed also normal of constant mean and variance. For normal
random walk proposals, we provide numerical results to optimally scale the proposal and the70

noise variance to optimize the performance of this limiting Markov chain as a function of d .
These results complement and validate the results obtained in previous contributions, bridging
the gap between the guidelines proposed in Doucet et al. (2015) and Sherlock et al. (2015). All
proofs can be found in the supplementary material.

2. THE PSEUDO-MARGINAL ALGORITHM75

2·1. Background
Consider a Bayesian model on the Borel space {2,B (2)} where 2 ⊆ Rd . The parame-

ter θ ∈ 2 follows a prior distribution p(dθ) while θ 7→ p(y | θ) denotes the likelihood func-
tion, where y = (y1, . . . , yT ) denotes the vector of observations. When the likelihood arises
from a complex latent variable model an analytic expression of p(y | θ) might not be avail-80

able. Hence, the standard Metropolis–Hastings algorithm cannot be used to sample the poste-
rior distribution p(dθ | y) ∝ p(dθ) p(y | θ) as the likelihood ratio p(y | θ ′)/p(y | θ) appear-
ing in the Metropolis–Hastings acceptance probability when at parameter θ and proposing θ ′

cannot be computed. Assume we have access to an unbiased positive estimator p̂(y | θ,U )
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of the intractable likelihood p(y | θ), where U ∼ mθ represents the auxiliary variables on 85

{U,B (U)} used to compute this estimator. We introduce the following probability measure on
{2× U,B (2)× B (U)}

π(dθ, du) = p(dθ | y)
p̂(y | θ, u)

p(y | θ)
mθ (du) ,

which satisfies π(dθ) = p(dθ | y). The pseudo-marginal algorithm is a Metropolis–Hastings
scheme targeting π(dθ, du), hence marginally p(dθ | y), using a proposal distribution
Q
(
θ, u; dθ ′, du′

)
= q(θ, dθ ′)mθ ′

(
du′
)
. This yields the acceptance probability 90

α(θ, u; θ ′, u′) = min
{

1, r(θ, θ ′)
p̂(y | θ ′, u′)/p(y | θ ′)
p̂(y | θ, u)/p(y | θ)

}
, where r(θ, θ ′) =

π(dθ ′)
π(dθ)

q(θ ′, dθ)
q(θ, dθ ′)

.

As in previous contributions (Andrieu & Roberts, 2009; Pitt et al., 2012; Andrieu & Vi-
hola, 2015; Doucet et al., 2015; Sherlock et al., 2015), we analyze the pseudo-marginal al-
gorithm using additive noise in the log-likelihood estimator, writing Z(θ) = log p̂(y | θ,U )−
log p(y | θ). This parameterization allows us to write the target distribution as a measure on
{2× R,B (2)× B (R)} with 95

π(dθ, dz) = p(dθ | y)exp (z) g (dz | θ) ,

where Z(θ) ∼ g (· | θ) when U ∼ mθ and the pseudo-marginal kernel is

P
(
θ, z; dθ ′, dz′

)
= q(θ, dθ ′)g(dz′ | θ ′)α

(
θ, z; θ ′, z′

)
+ ρ(θ, z)δ(θ,z)(dθ ′, dz′),

with acceptance probability

α
(
θ, z; θ ′, z′

)
= min

{
1, r(θ, θ ′)exp

(
z′ − z

)}
,

and corresponding rejection probability ρ(θ, z).

2·2. Literature Review 100

We briefly review here recent research motivating this work. To this end, we first
need to introduce a few additional notation. Let µ be a probability measure on
{Rn,B(Rn)} and 5 : Rn

× B(Rn)→ [0, 1] a Markov transition kernel. For any measur-
able function f and measurable set A, we write µ( f ) =

∫
f (x)µ(dx), µ(A) = µ {IA (·)}

and 5 f (x) =
∫
5(x, dy) f (y). We consider the Hilbert space L2(µ) with inner product 105

〈 f, g〉µ =
∫

f (x)g(x)µ(dx). For a function f ∈ L2(µ), the asymptotic variance of averages of
a stationary Markov chain (Xk)k>1 of µ-invariant transition kernel 5 is defined as

var( f,5) = lim
M→∞

1
M

E

{
M∑

k=1

f (Xk)− µ( f )

}2

,

and var( f,5) = varµ( f ) τ ( f,5)whenever the integrated autocorrelation time, τ( f,5), defined
by

τ( f,5) = 1+ 2
∞∑

k=1

cov { f (X0), f (Xk)}

var { f (X0)}
,

is finite. We denote by ϕ(x;m,3) the normal density of argument x , mean m and covariance3. 110

In order to obtain guidelines to balance computational cost and accuracy of the likelihood
estimator Pitt et al. (2012), Doucet et al. (2015) and Sherlock et al. (2015) make the simpli-
fying assumption that g (dz | θ) = ϕ(dz;−σ 2/2, σ 2), that σ 2

∝ 1/N , and focus on functions
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f ∈ L2(π) such that f (θ, z) = f
(
θ, z′

)
for any z, z′. Under these simplifying assumptions, it

was first proposed by Pitt et al. (2012) to minimize115

CT( f, Pσ ) =
τ( f, Pσ )
σ 2

, (1)

with respect to σ where

Pσ
(
θ, z; dθ ′, dz′

)
= q(θ, dθ ′)ϕ(dz;−σ 2/2, σ 2)α

(
θ, z; θ ′, z′

)
+ ρσ (θ, z)δ(θ,z)(dθ ′, dz′), (2)

ρσ (θ, z) being the corresponding rejection probability. The criterion (1) arises from the fact that
the computational time required to evaluate the likelihood is typically proportional to N . Under
the additional assumption that q(θ, dθ ′) = π(dθ ′), the minimizer of CT( f, Pσ ) is σ = 0·92 (Pitt
et al., 2012). For more general proposal distributions Doucet et al. (2015) minimize upper bounds120

on CT( f, Pσ ). This results in guidelines stating that one should select indeed σ around 1·0 when
the Metropolis–Hastings algorithm using the exact likelihood would provide an estimator having
a small integrated autocorrelation time and around 1·7 when this integrated autocorrelation time
is very large (Doucet et al., 2015). In practical scenarios, the integrated autocorrelation time of
the Metropolis–Hastings algorithm using the exact likelihood is unknown as the algorithm can-125

not be implemented and the results in Doucet et al. (2015) suggest to select σ around 1·2 as a
robust default choice. A slightly different approach is taken by Sherlock et al. (2015). In addition
to similar noise assumptions, it is assumed that the posterior factorizes into d independent and
identically distributed components and that one uses an isotropic normal random walk proposal
of jump size proportional to `. In this context, one maximizes with respect to (σ, `) the expected130

squared jump distance associated to the pseudo-marginal sequence of the first parameter compo-
nent (ϑ1,k)k>0 at stationarity divided by the noise variance as d →∞. In this asymptotic regime,
a time-rescaled version of (ϑ1,k)k>0 converges weakly to a diffusion process and the adequately
rescaled expected squared jumping distance converges to the squared diffusion coefficient of this
process. In this context, however, maximizing the diffusion coefficient (which also appears in135

the drift) speeds up the diffusion, decreasing the variance of any Monte Carlo estimate (see, e.g.
Roberts & Rosenthal, 2014). Thus, maximizing the scaled expected squared jump distance is
asymptotically equivalent to minimizing CT( f, Pσ ) irrespective of f and its maximizing argu-
ments are σ = 1·8 and ` = 2·56 (Sherlock et al., 2015, Corollary 1).

In practice, the standard deviation of the log-likelihood estimator varies over the parameter140

space and one selects N such that this standard deviation is approximately equal to the desired
σ for a parameter value around the mode of the posterior density obtained through a preliminary
run.

3. LARGE SAMPLE ASYMPTOTICS OF THE PSEUDO-MARGINAL ALGORITHM

3·1. Notation and Assumptions145

Our analysis of the pseudo-marginal algorithm relies on the assumption that the posterior con-
centrates (Assumption 1) which is most commonly formulated using convergence in probability
with respect to the data distribution, denoted PY . For our result to hold under this weak assump-
tion we take into account the randomness induced by the data, resulting in a random Markov
chain. This induces some technical difficulties dealing with weak convergence of random prob-150

ability measures. To make this more precise we introduce the following notation.
The observations (Yt)t>1 are regarded as random variables defined on a probability space{

YN,B(Y)N,PY
}
, where B(Y)N denotes the Borel σ -algebra and we write � = YN for brevity.

For T > 1 we can define the random variables Y1:T = (Y1, . . . , YT ) as the coordinate projections
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to YT . Then, given ω = (yt)t>1 ∈ �, πωT (dθ) = p(dθ | y1:T ) denotes a regular version of the 155

target posterior distribution and, for any θ ∈ 2, gωT (dz | θ) the distribution of the error in the log-
likelihood estimator for observations y1:T . The measures πωT and gωT can be interpreted as random
measures. Relevant results for random measures are briefly discussed in Section 4 and in more
detail in the supplementary material. In the following we will use a superscript ω to highlight
that a certain quantity depends on the data. All probability densities considered hereafter are with 160

respect to the Lebesgue measure and we use the same symbols for distributions and densities,
e.g., µ (dθ) = µ (θ) dθ .

In this context, the target distribution of the pseudo-marginal algorithm is

πωT (dθ, dz) = πωT (dθ)exp (z) gωT (dz | θ) ,

and its transition kernel is

Pω
T

(
θ, z; dθ ′, dz′

)
= qT (θ, dθ ′)gωT (dz′ | θ ′)αωT

(
θ, z; θ ′, z′

)
+ ρωT (θ, z)δ(θ,z)

(
dθ ′, dz′

)
,

where 165

αωT
(
θ, z; θ ′, z′

)
= min

{
1,
πωT (dθ

′)

πωT (dθ)
qT (θ

′, dθ)
qT (θ, dθ ′)

exp
(
z′ − z

)}
and ρωT (θ, z) is the corresponding rejection probability.

Our first assumption is that the posterior distributions concentrate towards a normal. We denote
by YT the σ -algebra spanned by Y1:T .

Assumption 1. The posterior distributions {πωT (dθ)}T>1 admit densities and there exists a 170

d × d positive definite matrix6, a parameter value θ̄ ∈ 2 and a sequence (θ̂ωT )T>1 of YT -adapted
random variables such that as T →∞∫ ∣∣∣πωT (θ)− ϕ(θ; θ̂ωT , 6/T

)∣∣∣ dθ → 0, θ̂ωT →, θ̄ (3)

both convergence being in PY -probability.

In particular, Assumption 1 is satisfied if a Bernstein-von Mises theorem holds; see, e.g.,
Van der Vaart (2000, Theorem 10.1) for the classical version or Kleijn & Van der Vaart (2012) 175

for the misspecified case. Under this assumption, the posterior concentrates at rate 1/
√

T . Our
second assumption is that we use random walk proposal distributions whose increments are
appropriately scaled.

Assumption 2. The proposal distributions {qT (θ, dθ ′)}T>1 admit densities of the form

qT (θ, θ
′) = T 1/2ν

{
T 1/2(θ ′ − θ)

}
,

where ν is a continuous probability density on Rd with
∫
‖θ‖ ν(dθ) <∞ for the Euclidean norm 180

‖ · ‖.

Finally, we assume that the error in the log-likelihood estimator satisfies a central limit theorem
conditional upon YT and that this convergence holds uniformly in a neighbourhood of θ̄ .

Assumption 3. There exists an ε-ball B(θ̄) around θ̄ such that the distributions of the error in
the log-likelihood estimator

{
gωT (dz | θ)

}
T>1 satisfy as T →∞185

sup
θ∈B(θ̄)

dBL
[
gωT ( · | θ) , ϕ

{
· ; −σ 2(θ)/2, σ 2(θ)

}]
→ 0, (4)



6 S. M. SCHMON, G. DELIGIANNIDIS, A. DOUCET AND M.K. PITT

in PY -probability, where dBL denotes the bounded Lipschitz metric, σ : 2→ [0,∞) is contin-
uous at θ̄ with 0 < σ(θ̄) <∞. An analogous result holds for ḡωT (z | θ) = exp(z)gωT (z | θ), the
distribution of this error at equilibrium, that is as T →∞

sup
θ∈B(θ̄)

dBL
[
ḡωT ( · | θ) , ϕ

{
·; σ 2(θ)/2, σ 2(θ)

}]
→ 0 (5)

in PY -probability.

We will refer to convergence in probability with respect to the bounded Lipschitz metric as190

weak convergence in probability. In Section 5, we provide sufficient conditions under which
this assumption is satisfied by likelihood estimators obtained through importance sampling for
random effects models.

3·2. Weak Convergence in the Large Sample Regime
Denote (ϑωT,k, ZωT,k)k>0 the stationary Markov chain defined by the pseudo-marginal ker-195

nel, i.e. (ϑωT,0, ZωT,0) ∼ π
ω
T and (ϑωT,k, ZωT,k) ∼ Pω

T (ϑ
ω
T,k−1, ZωT,k−1; ·) for k > 1. Let χωT =

(ϑ̃ωT,k, ZωT,k)k>0 where ϑ̃ωT,k = T 1/2(ϑωT,k − θ̂
ω
T ) is the Markov chain arising from rescaling the

parameter component of the pseudo-marginal chain. Its transition kernel is thus

P̃ω
T (θ̃ , z; dθ̃ ′, dz′) = q̃T (θ̃ , dθ̃ ′)g̃ωT (dz′|θ̃ ′)α̃ωT

(
θ̃ , z; θ̃ ′, z′

)
+ ρ̃ωT (θ̃ , z)δ(θ̃ ,z)(dθ̃

′, dz′),

where

α̃ωT (θ̃ , z; θ̃ ′, z′
)
= min

{
1,
π̃ωT (dθ̃

′)

π̃ωT (dθ̃ )

q̃T (θ̃
′, dθ̃ )

q̃T (θ̃ , dθ̃ ′)
exp

(
z′ − z

)}
,200

ρ̃ωT (θ, z) is the corresponding rejection probability, π̃ωT (θ̃) = π
ω
T (θ̂

ω
T + θ̃/T 1/2)/T 1/2,

q̃T (θ̃ , θ̃
′) = qT (θ̂

ω
T + θ̃/T 1/2, θ̂ωT + θ̃

′/T 1/2)/T 1/2 and g̃ωT (z | θ̃ ) = gωT (z | θ̂
ω
T + θ̃/T 1/2).

Under Assumption 2, we have

q̃T (θ̃ , θ̃
′) = ν(θ̃ ′ − θ̃ ) = q̃(θ̃ , θ̃ ′).

We now state the main result of this paper.

THEOREM 1. Under Assumptions 1, 2 and 3, the sequence of stationary Markov chains205

(χωT )T>1 converges weakly in PY -probability as T →∞ to the law of a stationary Markov chain
of initial distribution

π̃(dθ̃ , dz) = ϕ(dθ̃; 0, 6)ϕ
(
dz; σ 2/2, σ 2)

and transition kernel

P̃(θ̃ , z; dθ̃ ′, dz′) = q̃(θ̃ , dθ̃ ′)ϕ
(
dz′;−σ 2/2, σ 2) α̃(θ̃ , z; θ̃ ′, z′)+ ρ̃(θ̃ , z)δ(θ̃ ,z)(dθ̃

′, dz′) (6)

where σ = σ(θ̄),

α̃(θ̃ , z; θ̃ ′, z′) = min

{
1,
ϕ(θ̃ ′; 0, 6)

ϕ(θ̃; 0, 6)

q̃(θ̃ ′, θ̃ )

q̃(θ̃ , θ̃ ′)
exp

(
z′ − z

)}
,210

and ρ̃(θ, z) is the corresponding rejection probability.

Under this asymptotic regime, the limiting transition kernel (6) is thus a pseudo-marginal
transition kernel where the noise distribution is independent of the parameter and given by
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ϕ
(
dz;−σ 2/2, σ 2

)
as assumed in previous analyses (Pitt et al., 2012; Doucet et al., 2015; Sher-

lock et al., 2015). For large T , this suggests that some characteristics of the pseudo-marginal 215

kernel can indeed be captured by those of the kernel (2) which can be obtained from (6) by
using the change of variables θ = θ̂ωT + θ̃/T 1/2 and substituting the true target for its normal
approximation ϕ(θ; θ̂ωT , 6/T ), hence removing a level of approximation.

4. OUTLINE OF THE PROOF OF THE MAIN RESULT

4·1. Random Markov Chains 220

The proof of Theorem 1 follows from a slightly more general result on weak convergence of
random Markov chains on Polish spaces given in Theorem 2. We introduce here some notation
and recall some definitions concerning random probability measures that we need in order to de-
fine random Markov chains. For more details we refer the readers to the supplementary material
or Crauel (2003). 225

Let (�,F ,P) be a probability space and S a Polish space endowed with its Borel σ -algebra
B(S). We equip the product space �× S with the product σ -algebra F ⊗ B(S). We denote by
P(S) the space of Borel probability measures which is itself endowed with the Borel σ -algebra
B{P(S)} generated by the weak topology. Finally, Cb(S), respectively BL(S), denote the sets of
continuous bounded functions, respectively the set of bounded Lipschitz functions. 230

DEFINITION 1 (Random probability measure). A random probability measure is a map
µ : �× B (S)→ [0, 1], (ω, B) 7→ µ(ω, B) = µω(B), such that for every B ∈ B (S) the map
ω 7→ µ(ω, B) is measurable while µω ∈ P(S) P−almost surely.

For all bounded and measurable functions g : �× S→ R, ω 7→
∫

S g(ω, x)µω(dx) is mea-
surable (Crauel, 2003, Proposition 3.3) and thus the map ω 7→ µω( f ) is a random variable for 235

bounded measurable functions f : S→ R. Consequently, µω : �→ P(S) is a Borel measurable
map. Conversely, it can be shown that any random element of {P(S),B(P(S)} fulfils the con-
ditions set out in Definition 1; see Crauel (2003, Remark 3.20 (i)) or Kallenberg (2006, Lemma
1.37) for details.

DEFINITION 2 (Random Markov kernel). A random Markov kernel is a map K : �× S × 240

B(S)→ [0, 1], (ω, x, B) 7→ K (ω, x, B) = K ω(x, B), such that

(i) (ω, x) 7→ K ω(x, B) is F ⊗ B(S)-measurable for every B ∈ B(S),
(ii) K ω(x, ·) ∈ P(S) P−almost surely for every x ∈ S.

LEMMA 1 (Random Markov chain). Given a random probability measure µω and random
Markov kernel K ω, there exists a (almost surely) unique random probability measure µN,ω on 245

SN such that

µN,ω(A1 × . . .× Ak × Ek+1) =

∫
A1

µω(dx1)

∫
A2

K ω(x1, dx2) . . .

∫
Ak

K ω(xk−1, dxk)

for any Ai ∈ B(S) (i = 1, . . . , k), k ∈ N and Ek+1 = ×∞i=k+1S.

4·2. Convergence of Random Markov Chains
For a sequence of random probability measures (µωn )n>1, respectively a sequence of random

Markov kernels (K ω
n )n>1, converging in a suitable sense towards a probability measure µ, re- 250

spectively a Markov kernel K , we show here that the distributions of the associated Markov
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chains (µN,ω
n )n>1 defined in Lemma 1 converge weakly in probability to the distribution µN of

the homogeneous Markov chain of initial distribution µ and Markov kernel K .

THEOREM 2 (WEAK CONVERGENCE OF RANDOM MARKOV CHAINS). If the following as-
sumptions hold,255

(T.1) the random probability measures
(
µωn
)

n>1 converge weakly in probability to a probability
measure µ as n→∞,

(T.2) the random Markov transition kernels
(
K ω

n

)
n>1 satisfy∫ ∣∣K ω

n f (x)− K f (x)
∣∣µωn (dx)→ 0

in probability as n→∞ for all f ∈ BL(S) where K is a Markov transition kernel ,
(T.3) the transition kernel K is such that x 7→ K f (x) is continuous for any f ∈ Cb(S),260

then, as n→∞, the measures (µN,ω
n )n>1 on SN converge weakly in probability to the measure

µN induced by the Markov chain with initial distribution µ and transition kernel K .

4·3. Application to the Pseudo-Marginal Algorithm
Theorem 1 follows from Theorem 2 by noting that under Assumptions 1, 2 and 3 all conditions

set out in Theorem 2 are fulfilled. Firstly, as we increase the number of data points, the stationary265

distribution of the Markov chain will converge weakly to the limiting stationary distribution of
Theorem 2.

PROPOSITION 1. Under Assumptions 1 and 3, we have

π̃ωT (dθ̃ , dz)→ π̃(dθ̃ , dz),

weakly in PY -probability as T →∞ where π̃ωT (dθ̃ , dz) = π̃ωT (dθ̃ )exp (z) g̃ωT (dz | θ̃ ).

This follows as the marginal πωT (dθ) concentrates around the limiting parameter value θ̄ while270

the noise uniformly converges towards a normal distribution in a neighbourhood around θ̄ . The
next proposition ensures the stability of the transition and can be proven using similar arguments.

PROPOSITION 2. Under Assumptions 1, 2 and 3, we have for any f ∈ BL(Rd+1)∫
|P̃ω

T f (θ, z)− P̃ f (θ, z)|π̃ωT (dθ, dz)→ 0

in PY -probability as T →∞.

A further requirement to ensure the stability of the transition is that the the application of the275

transition operator conserves continuity.

PROPOSITION 3. Under Assumption 2, the map (θ, z) 7→ P̃ f (θ, z) is continuous for every
f ∈ Cb(Rd+1).

Theorem 1 now follows from a direct application of Theorem 2 as the assumptions (T.1), (T.2)
and (T.3) hold by Proposition 1, 2 and 3, respectively. 280
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5. RANDOM EFFECTS MODELS

5·1. Statistical Model and Likelihood Estimator
We provide here sufficient conditions under which weak convergence of the pseudo-marginal

algorithm is verified for an important class of latent variable models. Consider the model

X t ∼ f (· | θ), Yt | X t ∼ g(· | X t , θ), (7)

where (X t)t>1 are independent Rk-valued latent variables, f (x | θ) is a density with respect to 285

Lebesgue measure and (Yt)t>1 are Y-valued observations distributed according to a conditional
density g(y | x, θ) with respect to a dominating measure, Y being a topological space. For ob-
servations Y1:T = y1:T the likelihood is

p(y1:T | θ) =

T∏
t=1

p(yt | θ) =

T∏
t=1

∫
g(yt | xt , θ) f (xt | θ)dxt .

In many practical scenarios, the likelihood is not available analytically. If one wants to per-
form Bayesian inference about the parameter θ in this context, we can use the pseudo-marginal 290

algorithm as it is possible to obtain an unbiased non-negative estimator of p(y1:T | θ) us-
ing importance sampling. Indeed, we can consider p̂(y1:T | θ,U ) =

∏T
t=1 p̂(yt | θ,Ut) where

U = (U1, ...,UT ) , Ut =
(
Ut,1, ...,Ut,N

)
, Ut,i is Rk-valued, N denotes the number of Monte

Carlo samples and p̂(yt | θ,Ut) is an importance sampling estimator of p(yt | θ) given by

p̂(yt | θ,Ut) =
1
N

N∑
i=1

w(yt ,Ut,i , θ), w(yt ,Ut,i , θ) =
g(yt | Ut,i , θ) f (Ut,i | θ)

h(Ut,i | yt , θ)
,

where Ut,i ∼ h(· | yt , θ), h(u | yt , θ) being a probability density on Rk with respect to Lebesgue 295

measure. In this case the joint density of all the auxiliary variates used to obtain the likelihood
estimator is

mT,θ (u) =
T∏

t=1

N∏
i=1

h(ut,i | yt , θ).

We will assume subsequently that the true observations are independent and identically dis-
tributed samples taken from some unspecified probability measure µ. The joint data distribution
is then just the product measure PY (dω) =

∏
∞

t=1 µ(dyt). 300

5·2. Verifying the assumptions
The Bernstein–von Mises theorem holds under weak regularity assumptions; see, e.g., Van der

Vaart (2000, Theorem 10.1). This ensures Assumption 1 is satisfied while Assumption 2 is easy
to satisfy, e.g., select a multivariate normal proposal of covariance scaling as 1/

√
T . Assumption

3 is more complicated as it requires to establish uniform conditional central limit theorems for 305

p̂(Y 1:T | θ,U ) in scenarios where U ∼ mT,θ arise from the proposal, so Z ∼ gωT (· | θ) , or at
stationarity where U ∼ πωT (· | θ) with

πωT (u | θ) =
p̂(y1:T | θ, u)

p(y1:T | θ)
mT,θ (u),

implying that Z ∼ ḡωT (· | θ). We denote

σ 2(y, θ) = E
{
εT (y, θ)2

}
= var

{
w(y,U1,1, θ)

}
, σ 2(θ) = E

{
σ 2(Y1, θ)

}
,
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with U1,1 ∼ h(· | y, θ), Y1 ∼ µ and310

w(Yt ,Ut,i , θ) =
w(Yt ,Ut,i , θ)

p(Yt | θ)
. (8)

We make the following assumption.

Assumption 4. There exists a closed ε-ball B(θ̄) around θ̄ and a function g such that the nor-
malized weight w(y,U1,1, θ) defined in (8) satisfies

sup
θ∈B(θ̄)

E
{∣∣w(y,U1,1, θ)

∣∣7} ≤ g(y), (9)

where U1,1 ∼ h( · | y, θ) and µ(g) <∞. Additionally θ 7→ σ 2(y, θ) is continuous in θ on B(θ̄)315

for all y ∈ Y. Further, there exist real constants δ,C, a > 0 such that for all t ∈ [0, a)

sup
θ∈B(θ̄),y∈Y

P{w(y,U1,1, θ) ≤ t} ≤ Ct1+δ.

Under these conditions, we obtain the following uniform version of the central limit theorem
for the error in the log-likelihood estimator.

THEOREM 3 (UNIFORM CENTRAL LIMIT THEOREM). Under Assumption 4, Assumption 3
is satisfied.320

Theorem 3 strengthens earlier results of Deligiannidis et al. (2015, Theorem 1) which obtain
standard central limit theorems for the error in the log-likelihood estimator.

6. OPTIMIZATION OF THE PSEUDO-MARGINAL RANDOM WALK ALGORITHM

6·1. Optimization Problem
We propose to optimize the performance of the limiting pseudo-marginal chain identified in325

Theorem 1 as a proxy for the optimization of the original pseudo-marginal chain. We assume that
the limiting covariance matrix 6 in (3) is the identity matrix Id with d denoting the parameter
dimension. For more general covariance matrices, we can use a Cholesky decomposition and a
change of variables as in Sherlock et al. (2015); Nemeth et al. (2016). We denote by P̃`,σ the
transition kernel (6) using the proposal density330

q(θ, θ ′) = ϕ
(
θ ′; θ, `2 Id/d

)
.

As Pitt et al. (2012) and Doucet et al. (2015), we propose to minimize

CT( f, P̃`,σ ) =
τ( f, P̃`,σ )

σ 2

with respect to the noise standard deviation σ but, contrary to Pitt et al. (2012) and Doucet et al.
(2015), also with the scale parameter `. We restrict attention here to the case where f (θ, z) =
θ1, the first component of θ , and write CT( f, P̃`,σ ) = CT(`, σ ) in this case. As this criterion is
not available in closed-form, we simulate the limiting Markov chain initialized in its stationary335

regime with different noise levels σ and different values of ` on a fine grid to obtain empirical
estimates of CT( f, P̃`,σ ) computed using the overlapping batch mean estimator. Other estimators
did not provide significantly different results. This simulation is straightforward as the target
and noise distributions in this limiting case are both Gaussian. We then find the approximate
minimizer ( ˆ̀opt, σ̂opt) of CT( f, P̃`,σ ) over this grid. This set-up is applied for selected scenarios340

with parameter dimension d ranging from 1 to 50.
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Table 1. Optimal values for scaling ` and noise σ and associated
value of computing time and average acceptance probability. All
simulations with 10 repetitions. We report the mean of the minimizers

as well as the standard deviation over the 10 repetitions.
Dimension d ˆ̀opt σ̂opt CT(σ̂opt, ˆ̀opt) pracc(σ̂opt, ˆ̀opt)

d = 1 2·05 (0·25) 1·16 (0·07) 8·47 25·73%
d = 2 1·97 (0·14) 1·21 (0·06) 12·71 22·92%
d = 3 2·11 (0·07) 1·24 (0·05) 16·79 19·97%
d = 5 2·17 (0·12) 1·30 (0·05) 23·18 17·35%
d = 10 2·20 (0·08) 1·44 (0·05) 37·93 14·27%
d = 15 2·33 (0·08) 1·50 (0·00) 53·43 12·07%
d = 20 2·34 (0·10) 1·54 (0·05) 65·62 11·44%
d = 30 2·36 (0·11) 1·61 (0·03) 90·46 10·41%
d = 50 2·41 (0·10) 1·74 (0·05) 136·38 8·66%

Table 2. Comparison of the computing time for different
noise levels. σ̂opt denotes the minimizer of the estimated in-

tegrated autocorrelation time, as shown in Table 1.
Dimension d CT(σ̂opt, `∞) CT(σ = 1.2, `∞) CT(σ∞, `∞)

d = 1 9·04 (0·25) 9·05 (0·21) 17·10 (1·34)
d = 2 13·48 (0·32) 13·37 (0·28) 22·45 (0·81)
d = 3 17·63 (0·28) 17·43 (0·26) 26·71 (0·64)
d = 5 24·38 (0·44) 24·72 (0·31) 34·14 (0·88)
d = 10 40·17 (0·71) 41·60 (0·24) 47·08 (1·03)
d = 15 53·69 (0·72) 58·01 (0·50) 59·08 (0·79)
d = 20 67·15 (0·53) 74·34 (0·36) 71·41 (1·48)
d = 30 91·36 (0·95) 106·08 (0·34) 93·73 (1·08)
d = 50 136·49 (1·18) 167·83 (0·75) 135·92 (1·27)

6·2. Numerical Results
The simulation results are collected in Table 1. In addition to ( ˆ̀opt, σ̂opt), we give also the com-

puting time at these values as well as the average acceptance probability of the proposal under
P̃`,σ at stationary using a chain length of K equal to 5 million. The results we obtain are consis- 345

tent with those in Doucet et al. (2015) and Sherlock et al. (2015). For low dimensions, 1 ≤ d ≤ 5,
the ideal Metropolis–Hastings algorithm mixes well and σ̂opt is around 1·1-1·3 as suggested by
Doucet et al. (2015) and it increases slowly as d increases to the values (σ∞, `∞) = (1·81, 2·56)
obtained by the diffusion limit (Sherlock et al., 2015). For example, for d = 50, we obtain
(σ̂opt, ˆ̀opt) = (1·74, 2·41) and the resulting optimal computing time CT(σ̂opt, ˆ̀opt) is close to 350

CT(σ∞, `∞). For lower dimensions, however, the performance in terms of computing time can be
increased by reducing the noise of the estimator and the proposed jumping distance in compari-
son to `∞ and σ∞; see Table 2. We also observed empirically that the cost function ` 7→ CT(`, σ )
is fairly flat as noticed in the limiting case by Sherlock et al. (2015).

7. SIMULATION STUDY: RANDOM EFFECTS MODEL 355

We now illustrate how the guidelines derived from the limiting pseudo-marginal chain com-
pare to a practical implementation of pseudo-marginal Metropolis-Hastings. We consider a
Bayesian logistic mixed effects model applied to a real data set. Mixed models are popular in
econometrics, survey analysis and medical statistics amongst others and are often used to de-
scribe heterogeneity between groups. Here we consider a subset of a cohort study of Indonesian360
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preschool children. This data was previously analyzed using Bayesian mixed models by Zeger
& Karim (1991). Overall, the dataset contains 1200 observations of 275 children. We model the
probability of a respiratory infection based on the following covariates: age, sex, height, an indi-
cator for presence of vitamin deficiency, an indicator for subnormal height and two seasonal com-
ponents. Including the intercept we have an overall of 8 covariates. Cluster effects due to repeated365

measurements of the same children are modelled with individual random intercepts. In this case
the linear predictor of a regression model based on covariates ct, j (t = 1, . . . , T, j = 1, . . . J )
reads

ηt, j = cT
t, jβ + X t , X t ∼ N (0, τ ),

where X t denotes the random intercept for children t = 1, . . . , T and β the regression parame-
ters. For every child we have an observation vector yt =

(
yt,1 . . . , yt,J

)
∈ {0, 1}J . The observa-370

tions are assumed conditionally independent given the random effects and are modelled through

p(y1:T | β, τ, x1:T ) =

T∏
t=1

J∏
j=1

exp(yt, jηt, j )

1+ exp(ηt, j )
.

Inference in mixed effects models often aims at finding the population effects and thus one is in-
terested in integrating out the random effects. Since the marginal likelihood contains intractable
integrals, this model lends itself to the pseudo-marginal approach. We obtain an unbiased esti-
mator of the marginal likelihood by estimating the integrals using the prior distribution of the375

random effects as importance distribution. For the covariate parameters we assume a diffuse
Gaussian prior and the variance of the random effects are assigned an inverse gamma prior. The
unknown parameter is θ = (β, τ ) ∈ Rd where d = 9. We run a pseudo-marginal algorithm with
a Gaussian random walk proposal for one million iterations. The covariance of the proposal is
set equal to the covariance matrix of the parameters estimated in a preliminary run and scaled by380

`/
√

d = 2·2/
√

9. We compare the integrated autocorrelation time and the acceptance rate with
that of the limiting chain using the same ` = 2·2 and σ = σ̂ . Here, σ̂ is the standard deviation of
the log-likelihood estimator obtained using 10000 samples of the marginal likelihood evaluated
at θ̄ = (β̄, τ̄ ) also estimated in a preliminary run. The results are summarized in Table 3. For a
given number of particles N we report the associated estimate of the noise in the log-likelihood385

estimator, the integrated autocorrelation time averaged over the 9 dimensions and the average
acceptance rate.

We find that the integrated autocorrelation time and the acceptance rate are very close to
the respective values of the limiting algorithm. This is visualized in Figure 1 where we plot
acceptance rate and integrated autocorrelation time of both algorithms against each other. The390

computing time of the pseudo-marginal algorithm targeting the exact posterior CT(θ1, Pω
T ) =

Nτ(θ1, Pω
T ) and the computing time of the limiting algorithm CT(θ1, P̃`,σ ) are both optimized for

N = 45 particles or σ̂ = 1·42, respectively, as we would expect from Table 1. This demonstrates
that the limiting kernel captures well the behaviour of the pseudo-marginal kernel for large data
sets. In these scenarios, Table 1 thus provides useful dimension dependent guidelines on how395

to tune the pseudo-marginal kernel. We further illustrate the relevance of these guidelines for
another example in the supplementary material.
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Table 3. For N particles: standard deviation σ̂ of the log-likelihood
estimator at the mean, average integrated autocorrelation time τ̂ and
average acceptance probability p̂racc for pseudo-marginal kernel with
` = 2·2 and limiting kernel P̃`=2·2,σ̂ . The row associated with the mini-

mum values for the computing time is highlighted.

Particles N σ̂ τ̂ p̂racc τ̂
(

P̃`=2·2,σ=σ̂

)
p̂racc

(
P̃`=2·2,σ=σ̂

)
25 1·90 141·32 9·09% 151·18 8·68%
30 1·73 117·51 10·68% 105·43 10·65%
35 1·60 92·57 11·89% 91·05 12·18%
40 1·52 81·07 13·20% 83·82 13·01%
45 1·42 71·95 14·29% 69·50 14·59%
50 1·35 67·93 15·08% 64·48 15·45%
55 1·30 62·72 15·85% 58·84 16·33%
60 1·24 56·91 16·66% 55·98 16·33%
65 1·19 55·41 17·32% 50·71 17·94%
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Fig. 1. For N particles: integrated autocorrelation time and
acceptance rate for the pseudo-marginal algorithm with

` = 2·2 and limiting kernel P̃`=2·2,σ̂
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14 S. M. SCHMON, G. DELIGIANNIDIS, A. DOUCET AND M.K. PITT

REFERENCES

ANDRIEU, C., DOUCET, A. & HOLENSTEIN, R. (2010). Particle Markov chain Monte Carlo methods (with Discus-
sion). J. R. Statist. Soc. B 72, 269–342.

ANDRIEU, C. & ROBERTS, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo computations.
Ann. Statist. 37, 697–725.410

ANDRIEU, C. & VIHOLA, M. (2015). Convergence properties of pseudo-marginal Markov chain Monte Carlo
algorithms. Ann. Appl. Probab. 25, 1030–1077.

ANDRIEU, C. & VIHOLA, M. (2016). Establishing some order amongst exact approximations of MCMCs. Ann.
Appl. Probab. 26, 2661–2696.

BEAUMONT, M. A. (2003). Estimation of population growth or decline in genetically monitored populations. Ge-415

netics 164, 1139–1160.
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