65 research outputs found

    SUBMANIFOLD SPARSE CONVOLUTIONAL NETWORKS FOR SEMANTIC SEGMENTATION OF LARGE-SCALE ALS POINT CLOUDS

    Get PDF
    Semantic segmentation of point clouds is one of the main steps in automated processing of data from Airborne Laser Scanning (ALS). Established methods usually require expensive calculation of handcrafted, point-wise features. In contrast, Convolutional Neural Networks (CNNs) have been established as powerful classifiers, which at the same time also learn a set of features by themselves. However, their application to ALS data is not trivial. Pure 3D CNNs require a lot of memory and computing time, therefore most related approaches project ALS point clouds into two-dimensional images. Sparse Submanifold Convolutional Networks (SSCNs) address this issue by exploiting the sparsity often inherent in 3D data. In this work, we propose the application of SSCNs for efficient semantic segmentation of voxelized ALS point clouds in an end-to-end encoder-decoder architecture. We evaluate this method on the ISPRS Vaihingen 3D Semantic Labeling benchmark and achieve state-of-the-art 85.0% overall accuracy. Furthermore, we demonstrate its capabilities regarding large-scale ALS data by classifying a 2.5 km2 subset containing 41 M points from the Actueel Hoogtebestand Nederland (AHN3) with 95% overall accuracy in just 48 s inference time or with 96% in 108 s

    A mobile multi-sensor platform for building reconstruction integrating terrestrial and autonomous UAV-based close range data acquisition

    Get PDF
    Photogrammetric data capture of complex 3D objects using UAV imagery has become commonplace. Software tools based on algorithms like Structure-from-Motion and multi-view stereo image matching enable the fully automatic generation of densely meshed 3D point clouds. In contrast, the planning of a suitable image network usually requires considerable effort of a human expert, since this step directly influences the precision and completeness of the resulting point cloud. Planning of suitable camera stations can be rather complex, in particular for objects like buildings, bridges and monuments, which frequently feature strong depth variations to be acquired by high resolution images at a short distance. Within the paper, we present an automatic flight mission planning tool, which generates flight lines while aiming at camera configurations, which maintain a roughly constant object distance, provide sufficient image overlap and avoid unnecessary stations. Planning is based on a coarse Digital Surface Model and an approximate building outline. As a proof of concept, we use the tool within our research project MoVEQuaD, which aims at the reconstruction of building geometry at sub-centimetre accuracy

    Female home range size is regulated by resource distribution and intraspecific competition: a long-term field study

    Full text link
    The size of an individual’s home range is an important feature, influencing reproduction and survival, but it can vary considerably among both populations and individuals. The factors accounting for such variation are still poorly understood, and comprehensive long-term field studies considering various environmental factors that influence home range size are rare. We investigated the effects of seasonality, availability of food, cover, number of direct neighbours and the relative individual body mass on home range sizes in 125 adult female striped mice, Rhabdomys pumilio, in South Africa from 2004 to 2008. We used radiotelemetry to estimate home range sizes, trapping to determine the number of direct neighbours, and plant surveys in every home range to determine availability of food and cover. Home ranges were smaller when food quantity was high, many territorial neighbours were present, females had a relatively small body mass and during the nonbreeding season. We conclude that the availability of food resources and intraspecific competition are the main factors influencing home range size in female striped mice. Females enlarged their home ranges when territorial neighbours were few, and there was a significant positive correlation between home range size and quantity of food plants. This indicates that home range size might not reflect the minimal trade-off between access to resources that allow for a female’s survival and lowest cost for defending and foraging in that area. Instead, we propose a hypothesis for future research that female striped mice occupy areas several times larger than needed to improve their fitness by providing resources for future offspring

    Interaction of aluminium and drought stress on root growth and crop yield on acid soils

    Full text link

    Anti-adhäsive Effekte biotechnologisch synthetisierter humaner Milch-Oligosaccharide

    No full text

    3D laser scanning confocal microscopy of siloxane-based comb and double-comb polymers in PVDF-HFP thin films

    No full text
    Currently, atomic force microscopy is the preferred technique to determine roughness on membrane surfaces. In this paper, a new method to measure surface roughness is presented using a 3D laser scanning confocal microscope for high-resolution topographic analysis and is compared to conventional SEM. For this study, the surfaces of eight samples based on a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) host polymer with different liquid interpenetrating components were analyzed. Polymethylhydrosiloxane, triethylene glycolallylmethyether, (3,3,3-trifluoropropyl) methylcyclotrisiloxane (D-3-C2H4CF3), polysiloxane-comb-propyloxymethoxytriglycol (PSx), poly-siloxane-comb-propyl-3,3,3-trifluoro (PSx-C2H4CF3), poly [bis(2-(2-methoxyethoxy) ethoxy) phosphazene, or poly [bis(trifluoro) ethoxy] phosphazene was chosen as interpenetrating compound to investigate the impact of comb and double-comb-structured polymer backbones, as well as their dipolar or fluorous residues on the PVDF-HFP-miscibility. Different phases of the constituting ingredients were identified via their thermal properties determined by DSC. Additionally, the COSMO-RS method supported the experimental results, and with regard to computed sigma-profiles, new modified structures for polysiloxane and polyphosphazene synthesis were suggested

    Localisation of aluminium in root tips of Zea mays and Vicia faba

    No full text
    Monocot species and dicot species differ widely in the composition of their cell walls, namely in the pectin content, and thus in potential At-binding sires. The effect of these differences on cellular localisation as well as on tissue distribution of Al was compared in root tips of Zea mays and Vicia faba. The localisation of Al was assayed by Laser Microprobe Mass Analysis (LAMMA) after freeze-substitution. The radial mobility of Al was much lower in the roots of Vicia faba. In root tips of Zen mays, Al had reached the stele already after 60 min while it was confined to the rhizodermis and outer cortex cells in Vicia faba, indicating a stronger binding of Al in the cell walls of the dicot. This binding, however, had no influence on intracellular distribution. Within 60 min intracellular Al was detectable in both species. Nevertheless, by far the highest Al concentrations were always measured in the cell wall
    corecore