16,225 research outputs found

    Design of small Stirling dynamic isotope power system for robotic space missions

    Get PDF
    Design of a multihundred-watt Dynamic Isotope Power System (DIPS) based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE) technology is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. Unlike previous DIPS designs which were based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled down to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Preliminary characterization of units in the output power ranges 200-600 We indicate that on an electrical watt basis the GPHS/small Stirling DIPS will be roughly equivalent to an advanced RTG in size and mass but require less than a third of the isotope inventory

    Search for proton decay in the Frejus experiment

    Get PDF
    The status of the Frejus experiment and the preliminary results obtained in the search for nucleon decay are discussed. A modular, fine grain tracking calorimeter was installed in the Frejus laboratory in the period extending from October 1983 to May 1985. The 3300 cubic meter underground laboratory, located in the center of the Frejus tunnel in the Alps, is covered in the vertical direction by 1600 m of rocks (4400 m w.e.). The average number of atmospheric muons in the lab is 4.2 square meters per day. The 912 ton detector is made of 114 modules, each one including eight flash chamber and one Geiger vertical planes of (6 x 6) square meters dimensions. The flash chamber (and Geiger) planes are alternatively crossed to provide a 90 deg. stereo reconstruction. No candidate for the nucleon decay into charged lepton is found in the first sample of events

    Numerical electrokinetics

    Full text link
    A new lattice method is presented in order to efficiently solve the electrokinetic equations, which describe the structure and dynamics of the charge cloud and the flow field surrounding a single charged colloidal sphere, or a fixed array of such objects. We focus on calculating the electrophoretic mobility in the limit of small driving field, and systematically linearise the equations with respect to the latter. This gives rise to several subproblems, each of which is solved by a specialised numerical algorithm. For the total problem we combine these solvers in an iterative procedure. Applying this method, we study the effect of the screening mechanism (salt screening vs. counterion screening) on the electrophoretic mobility, and find a weak non-trivial dependence, as expected from scaling theory. Furthermore, we find that the orientation of the charge cloud (i. e. its dipole moment) depends on the value of the colloid charge, as a result of a competition between electrostatic and hydrodynamic effects.Comment: accepted for publication in Journal of Physics Condensed Matter (proceedings of the 2012 CODEF conference

    Covalency effects on the magnetism of EuRh2P2

    Full text link
    In experiments, the ternary Eu pnictide EuRh2P2 shows an unusual coexistence of a non-integral Eu valence of about 2.2 and a rather high Neel temperature of 50 K. In this paper, we present a model which explains the non-integral Eu valence via covalent bonding of the Eu 4f-orbitals to P2 molecular orbitals. In contrast to intermediate valence models where the hybridization with delocalized conduction band electrons is known to suppress magnetic ordering temperatures to at most a few Kelvin, covalent hybridization to the localized P2 orbitals avoids this suppression. Using perturbation theory we calculate the valence, the high temperature susceptibility, the Eu single-ion anisotropy and the superexchange couplings of nearest and next-nearest neighbouring Eu ions. The model predicts a tetragonal anisotropy of the Curie constants. We suggest an experimental investigation of this anisotropy using single crystals. From experimental values of the valence and the two Curie constants, the three free parameters of our model can be determined.Comment: 9 pages, 5 figures, submitted to J. Phys.: Condens. Matte

    Heat transport in rotating convection without Ekman layers

    Full text link
    Numerical simulation of rotating convection in plane layers with free slip boundaries show that the convective flows can be classified according to a quantity constructed from the Reynolds, Prandtl and Ekman numbers. Three different flow regimes appear: Laminar flow close to the onset of convection, turbulent flow in which the heat flow approaches the heat flow of non-rotating convection, and an intermediate regime in which the heat flow scales according to a power law independent of thermal diffusivity and kinematic viscosity.Comment: 4 pages, 4 figure

    Anti-phospholipid-antibodies in patients with relapsing polychondritis

    Get PDF
    Relapsing polychondritis (RP) is an extremly rare multisystemic disease thought to be of autoimmune origin. In order to assess if RP is associated with anti-phospholipid antibodies (aPL), clinical data and sera of 21 patients with RP were collected in a multicentre study. Concentration of anti-cardiolipin antibodies (aCL) (IgG-, IgM-and IgA-isotypes), anti-phosphatidylserine-antibodies (aPS) (IgG-and IgM-isotypes) and anti-ÎČ-2-glycoprotein I-antibodies (aÎČ2 GPI) were measured by ELISA. In eight patients aCL were found to be elevated. One patient had elevated aPS. No patient had elevated aÎČ2 GPI. No patient had clinical signs and symptoms of a aPL syndrome. Interestingly, the two RP patients with the highest aPL had concomitant systemic lupus erythematosus (SLE). Therefore the presence of elevated aPL in RP is probably more closely related to an associated SLE than to RP itself. There is no convincing evidence that aPL are associated with RP

    A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism

    Get PDF
    The receptor binding domain (RBD) of the spike glycoprotein of the coronavirus SARS‐CoV‐2 (CoV2‐S) binds to the human angiotensin converting enzyme 2 (ACE2) representing the initial contact point for leveraging the infection cascade. We used an automated selection process and identified an aptamer that specifically interacts with CoV2‐S. The aptamer does not bind to the RBD of CoV2‐S and does not block the interaction of CoV2‐S with ACE2. Notwithstanding, infection studies revealed potent and specific inhibition of pseudoviral infection by the aptamer. The present study opens up new vistas in developing SARS‐CoV2 infection inhibitors, independent of blocking the ACE2 interaction of the virus and harnesses aptamers as potential drug candidates and tools to disentangle hitherto inaccessible infection modalities, which is of particular interest in light of the increasing number of escape mutants that are currently being reported

    Charge Fluctuation Forces Between Stiff Polyelectrolytes in Salt Solution: Pairwise Summability Re-examined

    Full text link
    We formulate low-frequency charge-fluctuation forces between charged cylinders - parallel or skewed - in salt solution: forces from dipolar van der Waals fluctuations and those from the correlated monopolar fluctuations of mobile ions. At high salt concentrations forces are exponentially screened. In low-salt solutions dipolar energies go as R−5R^{-5} or R−4R^{-4}; monopolar energies vary as R−1R^{-1} or ln⁡R\ln{R}, where RR is the minimal separation between cylinders. However, pairwise summability of rod-rod forces is easily violated in low-salt conditions. Perhaps the most important result is not the derivation of pair potentials but rather the demonstration that some of these expressions may not be used for the very problems that originally motivated their derivation.Comment: 8 pages and 1 fig in ps forma

    Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime

    Full text link
    The Landau-Lifshitz fluctuating hydrodynamics is used to study the statistical properties of the linearized Kolmogorov flow. The relative simplicity of this flow allows a detailed analysis of the fluctuation spectrum from near equilibrium regime up to the vicinity of the first convective instability threshold. It is shown that in the long time limit the flow behaves as an incompressible fluid, regardless of the value of the Reynolds number. This is not the case for the short time behavior where the incompressibility assumption leads in general to a wrong form of the static correlation functions, except near the instability threshold. The theoretical predictions are confirmed by numerical simulations of the full nonlinear fluctuating hydrodynamic equations.Comment: 20 pages, 4 figure

    Complexity Bounds for Ordinal-Based Termination

    Full text link
    `What more than its truth do we know if we have a proof of a theorem in a given formal system?' We examine Kreisel's question in the particular context of program termination proofs, with an eye to deriving complexity bounds on program running times. Our main tool for this are length function theorems, which provide complexity bounds on the use of well quasi orders. We illustrate how to prove such theorems in the simple yet until now untreated case of ordinals. We show how to apply this new theorem to derive complexity bounds on programs when they are proven to terminate thanks to a ranking function into some ordinal.Comment: Invited talk at the 8th International Workshop on Reachability Problems (RP 2014, 22-24 September 2014, Oxford
    • 

    corecore