2,044 research outputs found

    Planning drinking water for airplanes

    Get PDF
    The management of the Dutch national airline company KLM intends to bring a sufficient amount of water on board of all flights to fulfill customer’s demand. On the other hand, the surplus of water after a flight should be kept to a minimum to reduce fuel costs. The service to passengers is measured with a service level. The objective of this research is to develop models, which can be used to minimize the amount of water on board of flights such that a predefined service level is met. The difficulty that has to be overcome is the fact that most of the available data of water consumption on flights are rounded off to the nearest eighth of the water tank. For wide-body aircrafts this rounding may correspond to about two hundred litres of water. Part of the problem was also to define a good service level. The use of a service level as a model parameter would give KLM a better control of the water surplus. The available data have been analyzed to examine which aspects we had to take into consideration. Next, a general framework has been developed in which the service level has been defined as a Quality of Service for each flight: The probability that a sufficient amount of water is available on a given flight leg. Three approaches will be proposed to find a probability distribution function for the total water consumption on a flight. The first approach tries to fit a distribution for the water consumption based on the available data, without any assumptions on the underlying shape of the distribution. The second approach assumes normality for the total water consumption on a flight and the third approach uses a binomial distribution. All methods are validated and numerically illustrated. We recommend KLM to use the second approach, where the first approach can be used to determine an upper bound on the water level

    Protein–protein HADDocking using exclusively pseudocontact shifts

    Get PDF
    In order to enhance the structure determination process of macromolecular assemblies by NMR, we have implemented long-range pseudocontact shift (PCS) restraints into the data-driven protein docking package HADDOCK. We demonstrate the efficiency of the method on a synthetic, yet realistic case based on the lanthanide-labeled N-terminal ε domain of the E. coli DNA polymerase III (ε186) in complex with the HOT domain. Docking from the bound form of the two partners is swiftly executed (interface RMSDs < 1 Å) even with addition of very large amount of noise, while the conformational changes of the free form still present some challenges (interface RMSDs in a 3.1–3.9 Å range for the ten lowest energy complexes). Finally, using exclusively PCS as experimental information, we determine the structure of ε186 in complex with the HOT-homologue θ subunit of the E. coli DNA polymerase III

    Efficient v-tensor determination and NH assignment of paramagnetic proteins

    Get PDF
    Abstract Anisotropic magnetic susceptibility tensors v of paramagnetic metal ions are manifested in pseudocontact shifts, residual dipolar couplings, and other paramagnetic observables that present valuable long-range information for structure determinations of protein-ligand complexes. A program was developed for automatic determination of the v-tensor anisotropy parameters and amide resonance assignments in proteins labeled with paramagnetic metal ions. The program requires knowledge of the three-dimensional structure of the protein, the backbone resonance assignments of the diamagnetic protein, and a pair of 2D 15 N-HSQC or 3D HNCO spectra recorded with and without paramagnetic metal ion. It allows the determination of reliable v-tensor anisotropy parameters from 2D spectra of uniformly 15 N-labeled proteins of fairly high molecular weight. Examples are shown for the 185-residue N-terminal domain of the subunit e from E. coli DNA polymerase III in complex with the subunit h and La 3+ in its diamagnetic and Dy 3+ , Tb 3+ , and Er 3+ in its paramagnetic form. Abbreviations: h -subunit h of E. coli polymerase III; e186 -N-terminal 185 residues of the E. coli polymerase III subunit e; PCS -pseudocontact shift; PRE -paramagnetic relaxation enhancement; RACSresidual anisotropic chemical shifts

    Targeting in situ and imaging multiple inflammatory biomarkers with quantum dots in DSS model of colitis

    Get PDF
    Poster presented at Biomedical Technology Showcase 2006, Philadelphia, PA. Retrieved 18 Aug 2006 from http://www.biomed.drexel.edu/new04/Content/Biomed_Tech_Showcase/Poster_Presentations/Papazoglou_6.pdf.Inflammatory Bowel Disease affects nearly 1.5 million people. Currently, there are no efficient and reliable methods to quantify the degree of inflammation in these patients. The objective here was to image and quantify in an experimental model of colitis, MPO, IL1_ and TNF_ (proinflammatory cytokines) using Quantum Dots (QDs) conjugated with specific antibodies. The resulting fluorescence intensity was then used as a measure of concentration of MPO and in turn inflammation. The fluorescent images obtained from animals showed sequential increase in fluorescence intensity of MPO correlating (R = 0.96) with clinical disease. Fluorescent images also showed co-localization of all the three markers in both acute as well as chronic inflammation. These observations suggest that QD bioconjugates can be used nanotools to image biomarkers of inflammation

    Schwannoma-like pleomorphic adenoma of the parotid

    Get PDF
    Pleomorphic adenoma is the most common benign salivary gland tumour. It can occur in any salivary gland, but is most frequently found in the parotid gland. Chondroid metaplasia is a frequent finding in pleomorphic adenoma. Other forms of metaplasia have been described, but are encountered less frequently. We report a rare case of unusual pleomorphic adenoma of the parotid gland with schwannoma-like feature

    Distribution of Class 1 Integrons with IS26-Mediated Deletions in Their 3′-Conserved Segments in Escherichia coli of Human and Animal Origin

    Get PDF
    Class 1 integrons play a role in the emergence of multi-resistant bacteria by facilitating the recruitment of gene cassettes encoding antibiotic resistance genes. 512 E. coli strains sourced from humans (n = 202), animals (n = 304) and the environment (n = 6) were screened for the presence of the intI1 gene. In 31/79 integron positive E. coli strains, the gene cassette regions could not be PCR amplified using standard primers. DNA sequence analysis of 6 serologically diverse strains revealed atypical integrons harboured the dfrA5 cassette gene and only 24 bp of the integron 3′-conserved segment (CS) remained, due to the insertion of IS26. PCR targeting intI1 and IS26 followed by restriction fragment length polymorphism (RFLP) analysis identified the integron-dfrA5-IS26 element in 27 E. coli strains of bovine origin and 4 strains of human origin. Southern hybridization and transformation studies revealed the integron-dfrA5-IS26 gene arrangement was either chromosomally located or plasmid borne. Plasmid location in 4/9 E. coli strains and PCR linkage of Tn21 transposition genes with the intI1 gene in 20/31 strains, suggests this element is readily disseminated by horizontal transfer

    TFEB regulates lysosomal proteostasis

    Get PDF
    Loss-of-function diseases are often caused by destabilizing mutations that lead to protein misfolding and degradation. Modulating the innate protein homeostasis (proteostasis) capacity may lead to rescue of native folding of the mutated variants, thereby ameliorating the disease phenotype. In lysosomal storage disorders (LSDs), a number of highly prevalent alleles have missense mutations that do not impair the enzyme's catalytic activity but destabilize its native structure, resulting in the degradation of the misfolded protein. Enhancing the cellular folding capacity enables rescuing the native, biologically functional structure of these unstable mutated enzymes. However, proteostasis modulators specific for the lysosomal system are currently unknown. Here, we investigate the role of the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and function, in modulating lysosomal proteostasis in LSDs. We show that TFEB activation results in enhanced folding, trafficking and lysosomal activity of a severely destabilized glucocerebrosidase (GC) variant associated with the development of Gaucher disease (GD), the most common LSD. TFEB specifically induces the expression of GC and of key genes involved in folding and lysosomal trafficking, thereby enhancing both the pool of mutated enzyme and its processing through the secretory pathway. TFEB activation also rescues the activity of a β-hexosaminidase mutant associated with the development of another LSD, Tay–Sachs disease, thus suggesting general applicability of TFEB-mediated proteostasis modulation to rescue destabilizing mutations in LSDs. In summary, our findings identify TFEB as a specific regulator of lysosomal proteostasis and suggest that TFEB may be used as a therapeutic target to rescue enzyme homeostasis in LSDs

    Effects of Phosphodiesterase 4 Inhibition on Alveolarization and Hyperoxia Toxicity in Newborn Rats

    Get PDF
    International audienceBACKGROUND: Prolonged neonatal exposure to hyperoxia is associated with high mortality, leukocyte influx in airspaces, and impaired alveolarization. Inhibitors of type 4 phosphodiesterases are potent anti-inflammatory drugs now proposed for lung disorders. The current study was undertaken to determine the effects of the prototypal phosphodiesterase-4 inhibitor rolipram on alveolar development and on hyperoxia-induced lung injury. METHODOLOGY/FINDINGS: Rat pups were placed under hyperoxia (FiO2>95%) or room air from birth, and received rolipram or its diluent daily until sacrifice. Mortality rate, weight gain and parameters of lung morphometry were recorded on day 10. Differential cell count and cytokine levels in bronchoalveolar lavage and cytokine mRNA levels in whole lung were recorded on day 6. Rolipram diminished weight gain either under air or hyperoxia. Hyperoxia induced huge mortality rate reaching 70% at day 10, which was prevented by rolipram. Leukocyte influx in bronchoalveolar lavage under hyperoxia was significantly diminished by rolipram. Hyperoxia increased transcript and protein levels of IL-6, MCP1, and osteopontin; rolipram inhibited the increase of these proteins. Alveolarization was impaired by hyperoxia and was not restored by rolipram. Under room air, rolipram-treated pups had significant decrease of Radial Alveolar Count. CONCLUSIONS: Although inhibition of phosphodiesterases 4 prevented mortality and lung inflammation induced by hyperoxia, it had no effect on alveolarization impairment, which might be accounted for by the aggressiveness of the model. The less complex structure of immature lungs of rolipram-treated pups as compared with diluent-treated pups under room air may be explained by the profound effect of PDE4 inhibition on weight gain that interfered with normal alveolarization
    corecore