15,308 research outputs found

    CHAIRMAN'S PREFATORY REMARKS

    Full text link

    The VLQ Calorimeter of H1 at HERA: A Highly Compact Device for Measurements of Electrons and Photons under Very Small Scattering Angles

    Full text link
    In 1998, the detector H1 at HERA has been equipped with a small backward spectrometer, the Very Low Q^2 (VLQ) spectrometer comprising a silicon tracker, a tungsten - scintillator sandwich calorimeter, and a Time-of-Flight system. The spectrometer was designed to measure electrons scattered under very low angles, equivalent to very low squared four - momentum transfers Q^2, and high energy photons with good energy and spatial resolution. The VLQ was in operation during the 1999 and 2000 run periods. This paper describes the design and construction of the VLQ calorimeter, a compact device with a fourfold projective energy read-out, and its performance during test runs and in the experiment.Comment: 32 pages, 25 figures, 2 tables (To be submitted to Nucl. Instrum. Meth. A

    Disruption of ph dynamics suppresses proliferation and potentiates doxorubicin cytotoxicity in breast cancer cells

    Get PDF
    The reverse pH gradient is a major feature associated with cancer cell reprogrammed metabolism. This phenotype is supported by increased activity of pH regulators like ATPases, carbonic anhydrases (CAs), monocarboxylate transporters (MCTs) and sodium–proton exchangers (NHEs) that induce an acidic tumor microenvironment, responsible for the cancer acid-resistant phenotype. In this work, we analyzed the expression of these pH regulators and explored their inhibition in breast cancer cells as a strategy to enhance the sensitivity to chemotherapy. Expression of the different pH regulators was evaluated by immunofluorescence and Western blot in two breast cancer cell lines (MDA-MB-231 and MCF-7) and by immunohistochemistry in human breast cancer tissues. Cell viability, migration and invasion were evaluated upon exposure to the pH regulator inhibitors (PRIs) concanamycin-A, cariporide, acetazolamide and cyano-4-hydroxycinnamate. Additionally, PRIs were combined with doxorubicin to analyze the effect of cell pH dynamic disruption on doxorubicin sensitivity. Both cancer cell lines expressed all pH regulators, except for MCT1 and CAXII, only expressed in MCF-7 cells. There was higher plasma membrane expression of the pH regulators in human breast cancer tissues than in normal breast epithelium. Additionally, pH regulator expression was significantly associated with different molecular subtypes of breast cancer. pH regulator inhibition decreased cancer cell aggressiveness, with a higher effect in MDA-MB-231. A synergistic inhibitory effect was observed when PRIs were combined with doxorubicin in the breast cancer cell line viability. Our results support proton dynamic disruption as a breast cancer antitumor strategy and the use of PRIs to boost the activity of conventional therapy.This research was funded by National funds, through the Foundation for Science and Technology (FCT) - project UIDB/50026/2020 and UIDP/50026/2020; and by the projects NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work was also supported by an internal CESPU project MetabRes_CESPU_2017. DT-V received a fellowship from FCT (ref. SFRH/BD/103025/2014)

    Commensurate structural modulation in the charge- and orbitally-ordered phase of the quadruple perovskite (NaMn3_3)Mn4_4O12_{12}

    Full text link
    By means of synchrotron x-ray and electron diffraction, we studied the structural changes at the charge order transition TCOT_{CO}=176 K in the mixed-valence quadruple perovskite (NaMn3_3)Mn4_4O12_{12}. Below TCOT_{CO} we find satellite peaks indicating a commensurate structural modulation with the same propagation vector q =(1/2,0,-1/2) of the CE magnetic order that appears at low temperature, similarly to the case of simple perovskites like La0.5_{0.5}Ca0.5_{0.5}MnO3_3. In the present case, the modulated structure together with the observation of a large entropy change at TCOT_{CO} gives evidence of a rare case of full Mn3+^{3+}/Mn4+^{4+} charge and orbital order consistent with the Goodenough-Kanamori model.Comment: Accepted for publication in Phys. Rev. B Rapid Communication

    Acousto-optic laser optical feedback imaging

    Get PDF
    We present a photon noise and diffraction limited imaging method combining the imaging laser and ultrasonic waves. The laser optical feedback imaging (LOFI) technique is an ultrasensitive imaging method for imaging objects through or embedded within a scattering medium. However, LOFI performances are dramatically limited by parasitic optical feedback occurring in the experimental setup. In this work, we have tagged the ballistic photons by an acousto-optic effect in order to filter the parasitic feedback effect and to reach the theoretical and ultimate sensitivity of the LOFI technique. We present the principle and the experimental setup of the acousto-optic laser optical feedback imaging (AO-LOFI) technique, and we demonstrate the suppression of the parasitic feedback

    Single Hole Green's Functions in Insulating Copper Oxides at Nonzero Temperature

    Full text link
    We consider the single hole dynamics in a modified tJt-J model at finite temperature. The modified model includes a next nearest (tt') and next-next nearest (tt'') hopping. The model has been considered before in the zero temperature limit to explain angle resolved photo-emission measurements. We extend this consideration to the case of finite temperature where long-range anti-ferromagnetic order is destroyed, using the self-consistent Born approximation. The Dyson equation which relates the single hole Green's functions for a fixed pseudo-spin and for fixed spin is derived. The Green's function with fixed pseudo-spin is infrared stable but the Green's function with fixed spin is close to an infrared divergency. We demonstrate how to renormalize this Green's function in order to assure numerical convergence. At non-zero temperature the quasi-particle peaks are found to shift down in energy and to be broadened.Comment: 7 pages, RevTex, 5 Postscript figure

    Discriminating changes in intracellular NADH/NAD+ levels due to anoxicity and H2 supply in R. eutropha cells using the Frex fluorescence sensor

    Get PDF
    The hydrogen-oxidizing “Knallgas” bacterium Ralstonia eutropha can thrive in aerobic and anaerobic environments and readily switches between heterotrophic and autotrophic metabolism, making it an attractive host for biotechnological applications including the sustainable H2-driven production of hydrocarbons. The soluble hydrogenase (SH), one out of four different [NiFe]-hydrogenases in R. eutropha, mediates H2 oxidation even in the presence of O2, thus providing an ideal model system for biological hydrogen production and utilization. The SH reversibly couples H2 oxidation with the reduction of NAD+ to NADH, thereby enabling the sustainable regeneration of this biotechnologically important nicotinamide cofactor. Thus, understanding the interaction of the SH with the cellular NADH/NAD+ pool is of high interest. Here, we applied the fluorescent biosensor Frex to measure changes in cytoplasmic [NADH] in R. eutropha cells under different gas supply conditions. The results show that Frex is well-suited to distinguish SH-mediated changes in the cytoplasmic redox status from effects of general anaerobiosis of the respiratory chain. Upon H2 supply, the Frex reporter reveals a robust fluorescence response and allows for monitoring rapid changes in cellular [NADH]. Compared to the Peredox fluorescence reporter, Frex displays a diminished NADH affinity, which prevents the saturation of the sensor under typical bacterial [NADH] levels. Thus, Frex is a valuable reporter for on-line monitoring of the [NADH]/[NAD+] redox state in living cells of R. eutropha and other proteobacteria. Based on these results, strategies for a rational optimization of fluorescent NADH sensors are discussed
    corecore