1,260 research outputs found
Supercoherent States, Super K\"ahler Geometry and Geometric Quantization
Generalized coherent states provide a means of connecting square integrable
representations of a semi-simple Lie group with the symplectic geometry of some
of its homogeneous spaces. In the first part of the present work this point of
view is extended to the supersymmetric context, through the study of the
OSp(2/2) coherent states. These are explicitly constructed starting from the
known abstract typical and atypical representations of osp(2/2). Their
underlying geometries turn out to be those of supersymplectic OSp(2/2)
homogeneous spaces. Moment maps identifying the latter with coadjoint orbits of
OSp(2/2) are exhibited via Berezin's symbols. When considered within
Rothstein's general paradigm, these results lead to a natural general
definition of a super K\"ahler supermanifold, the supergeometry of which is
determined in terms of the usual geometry of holomorphic Hermitian vector
bundles over K\"ahler manifolds. In particular, the supergeometry of the above
orbits is interpreted in terms of the geometry of Einstein-Hermitian vector
bundles. In the second part, an extension of the full geometric quantization
procedure is applied to the same coadjoint orbits. Thanks to the super K\"ahler
character of the latter, this procedure leads to explicit super unitary
irreducible representations of OSp(2/2) in super Hilbert spaces of
superholomorphic sections of prequantum bundles of the Kostant type. This work
lays the foundations of a program aimed at classifying Lie supergroups'
coadjoint orbits and their associated irreducible representations, ultimately
leading to harmonic superanalysis. For this purpose a set of consistent
conventions is exhibited.Comment: 53 pages, AMS-LaTeX (or LaTeX+AMSfonts
Connected Green function approach to ground state symmetry breaking in -theory
Using the cluster expansions for n-point Green functions we derive a closed
set of dynamical equations of motion for connected equal-time Green functions
by neglecting all connected functions higher than order for the
-theory in dimensions. We apply the equations to the
investigation of spontaneous ground state symmetry breaking, i.e. to the
evaluation of the effective potential at temperature . Within our momentum
space discretization we obtain a second order phase transition (in agreement
with the Simon-Griffith theorem) and a critical coupling of
as compared to a first order phase transition and
from the Gaussian effective potential approach.Comment: 25 Revtex pages, 5 figures available via fpt from the directory
ugi-94-11 of [email protected] as one postscript file (there
was a bug in our calculations, all numerical results and figures have changed
significantly), ugi-94-1
Heat-capacity anomalies at and in the ferromagnetic superconductor UGe
The heat-capacity and magnetization measurements under high pressure have
been carried out in a ferromagnetic superconductor UGe. Both measurements
were done using a same pressure cell in order to obtain both data for one
pressure. Contrary to the heat capacity at ambient pressure, an anomaly is
found in the heat capacity at the characteristic temperature where the
magnetization shows an anomalous enhancement under high pressure where the
superconductivity appears. This suggests that a thermodynamic phase transition
takes place at at least under high pressure slightly below
where becomes zero. The heat-capacity anomaly associated with the
superconducting transition is also investigated, where a clear peak of is
observed in a narrow pressure region ( GPa) around
contrary to the previous results of the resistivity measurement.
Present results suggest the importance of the thermodynamic critical point
for the appearance of the superconductivity.Comment: 4 pages, 4 figures, to appear in Phys. Rev. B, Rapid Communication
Super-conservative interpretation of muon g-2 results applied to supersymmetry
The recent developments in theory and experiment related to the anomalous
magnetic moment of the muon are applied to supersymmetry. We follow a very
cautious course, demanding that the supersymmetric contributions fit within
five standard deviations of the difference between experiment and the standard
model prediction. Arbitrarily small supersymmetric contributions are then
allowed, so no upper bounds on superpartner masses result. Nevertheless,
non-trivial exclusions are found. We characterize the substantial region of
parameter space ruled out by this analysis that has not been probed by any
previous experiment. We also discuss some implications of the results for
forthcoming collider experiments.Comment: 10 pages, latex, 3 fig
On the 3-particle scattering continuum in quasi one dimensional integer spin Heisenberg magnets
We analyse the three-particle scattering continuum in quasi one dimensional
integer spin Heisenberg antiferromagnets within a low-energy effective field
theory framework. We exactly determine the zero temperature dynamical structure
factor in the O(3) nonlinear sigma model and in Tsvelik's Majorana fermion
theory. We study the effects of interchain coupling in a Random Phase
Approximation. We discuss the application of our results to recent
neutron-scattering experiments on the Haldane-gap material .Comment: 8 pages of revtex, 5 figures, small changes, to appear in PR
Single-hole properties in the - and strong-coupling models
We report numerical results for the single-hole properties in the -
model and the strong-coupling approximation to the Hubbard model in two
dimensions. Using the hopping basis with over states we discuss (for an
infinite system) the bandwidth, the leading Fourier coefficients in the
dispersion, the band masses, and the spin-spin correlations near the hole. We
compare our results with those obtained by other methods. The band minimum is
found to be at () for the - model for , and for the strong-coupling model for . The bandwidth
in both models is approximately at large , in rough agreement with
loop-expansion results but in disagreement with other results. The
strong-coupling bandwidth for t/J\agt6 can be obtained from the - model
by treating the three-site terms in first-order perturbation theory. The
dispersion along the magnetic zone face is flat, giving a large
parallel/perpendicular band mass ratio.Comment: 1 RevTeX file with epsf directives to include 8 .eps figures 8 figure
files encoded using uufile
Ionization degree of the electron-hole plasma in semiconductor quantum wells
The degree of ionization of a nondegenerate two-dimensional electron-hole
plasma is calculated using the modified law of mass action, which takes into
account all bound and unbound states in a screened Coulomb potential.
Application of the variable phase method to this potential allows us to treat
scattering and bound states on the same footing. Inclusion of the scattering
states leads to a strong deviation from the standard law of mass action. A
qualitative difference between mid- and wide-gap semiconductors is
demonstrated. For wide-gap semiconductors at room temperature, when the bare
exciton binding energy is of the order of T, the equilibrium consists of an
almost equal mixture of correlated electron-hole pairs and uncorrelated free
carriers.Comment: 22 pages, 6 figure
Large-volume silicic volcanism in Kamchatka: Ar–Ar and U–Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions
The Kamchatka Peninsula in far eastern Russia represents the most volcanically active arc in the world in terms of magma production and the number of explosive eruptions. We investigate large-scale silicic volcanism in the past several million years and present new geochronologic results from major ignimbrite sheets exposed in Kamchatka. These ignimbrites are found in the vicinity of morphologically-preserved rims of partially eroded source calderas with diameters from ∼ 2 to ∼ 30 km and with estimated volumes of eruptions ranging from 10 to several hundred cubic kilometers of magma. We also identify and date two of the largest ignimbrites: Golygin Ignimbrite in southern Kamchatka (0.45 Ma), and Karymshina River Ignimbrites (1.78 Ma) in south-central Kamchatka. We present whole-rock geochemical analyses that can be used to correlate ignimbrites laterally. These large-volume ignimbrites sample a significant proportion of remelted Kamchatkan crust as constrained by the oxygen isotopes. Oxygen isotope analyses of minerals and matrix span a 3‰ range with a significant proportion of moderately low-δ18O values. This suggests that the source for these ignimbrites involved a hydrothermally-altered shallow crust, while participation of the Cretaceous siliceous basement is also evidenced by moderately elevated δ18O and Sr isotopes and xenocryst contamination in two volcanoes. The majority of dates obtained for caldera-forming eruptions coincide with glacial stages in accordance with the sediment record in the NW Pacific, suggesting an increase in explosive volcanic activity since the onset of the last glaciation 2.6 Ma. Rapid changes in ice volume during glacial times and the resulting fluctuation of glacial loading/unloading could have caused volatile saturation in shallow magma chambers and, in combination with availability of low-δ18O glacial meltwaters, increased the proportion of explosive vs effusive eruptions. The presented results provide new constraints on Pliocene–Pleistocene volcanic activity in Kamchatka, and thus constrain an important component of the Pacific Ring of Fire
Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs
We present a determination of the gluon polarization Delta G/G in the
nucleon, based on the helicity asymmetry of quasi-real photoproduction events,
Q^2<1(GeV/c)^2, with a pair of large transverse-momentum hadrons in the final
state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV
polarized muon beam scattered on a polarized 6-LiD target. The helicity
asymmetry for the selected events is = 0.002 +- 0.019(stat.) +-
0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta
G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3
(GeV}/c)^2.Comment: 10 pages, 3 figure
Measurement of the Spin Structure of the Deuteron in the DIS Region
We present a new measurement of the longitudinal spin asymmetry A_1^d and the
spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 <
Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS
experiment at CERN using a 160 GeV polarised muon beam and a large polarised
6-LiD target. The results are in agreement with those from previous experiments
and improve considerably the statistical accuracy in the region 0.004 < x <
0.03.Comment: 10 pages, 6 figures, subm. to PLB, revised: author list, Fig. 4,
details adde
- …