12 research outputs found

    Ambient effects on the electrical conductivity of carbon nanotubes

    Get PDF
    We show that the electrical conductivity of single walled carbon nanotubes (SWCNT) networks is affected by oxygen and air humidity under ambient conditions by more than a magnitude. Later, we intentionally modified the electrical conductivity by functionalization with iodine and investigated the changes in the band structure by optical absorption spectroscopy.Measuring in parallel the tubes electrical conductivity and optical absorption spectra, we found that conduction mechanism in SWCNT is comparable to that of intrinsically conducting polymers. We identified, in analogy to conducting polymers, in the infrared spectra a new absorption band which is responsible for the increased conductivity, leading to a closing gap in semiconducting SWCNT.We could show that by different functionalizations of the same SWCNT starting material the properties like conductivity can be dramatically changed, leading to different imaginable applications. We investigated here, an ultraviolet sensor with weakly modified SWCNT

    RLV applications: challenges and benefits of novel technologies for sustainable main stages

    Get PDF
    Within the scope of the European Green Deal, the aerospace industry is currently staking on sustainability. To fulfil the objectives and in order to ensure Europe's independent and cost-effective space access capabilities, the ASCenSIon (Advancing Space Access Capabilities - Reusability and Multiple Satellite Injection) project, funded by H2020, is connecting fifteen Early-Stage Researchers (ESRs) and twenty-four partner organizations all across Europe. The pillar concept within the project is to adopt a Concurrent Research Network (CRN) methodology. Accordingly, different host institutions, each one with its main research program and vision, are connected to develop the design under a new perspective. This approach emphasises the cooperation between the fifteen ESRs, thus covering the design of a Reusable Launch Vehicle (RLV) in its overall complexity, facing the new challenges deriving from the required sustainability in a more efficient manner. Corresponding to work package two (WP2) of ASCenSIon, this paper focuses on main stages for RLVs, and how the goal of sustainability affects their design. Therefore, many different interconnected disciplines, such as propulsion system, structural design, fatigue-life analysis and Health Monitoring (HM) have to be taken into consideration. These different domains are represented by the individual research projects of the ESRs, supported by a collaborative environment which promotes the foreseen interactions. At first, this contribution gives a general State-Of-The-Art overview of the mentioned topics. A preliminary trade-off on RLV architectures is established through multi-disciplinary design analysis and optimization methods based on propulsion modelling, optimal staging and structural sizing. These use performance and cost design metrics as objective functions, accounting for operability and maintainability factors. This investigation is then used to discuss the different Advanced Nozzle Concepts (ANCs) tailored on the system requirements and mission constraints. At this point, a one-dimensional performance analysis addresses the performance gain deriving from altitude-compensation properties of ANCs. Subsequently, the identification of a suitable green propellant will give the needed/accurate/required inputs to conduct a trade-off between engine cycles w.r.t. the fatigue-life of their most critical components. Consequently, fatigue-life analysis contributes to HM and sensing requirements for RLV systems. As a common approach between the ESRs, the data collection is organized in various Databases accessible within the network, which encourages their interconnections and collaborative research. This paper provides a preliminary analysis of the above discussed topics and their interconnections within the framework of ASCenSIon, aiming to develop novel technologies for future sustainable main stages

    Health Monitoring of Reuseable Rockets: Basics for Sensor Selection

    Get PDF
    With regard to the space field, the number of the sensors has grown for a middle-sized spacecraft from more than 500 at the beginning of the twenty-first century [1] to several thousands for nowadays applications. Meanwhile, Reusable Launch Vehicles (RLVs) moved their steps from demonstrators to commercial working systems. As a result, Health Monitoring (HM) is conquered its own space in the field and sensors are the primary elements required for implementing a monitoring unit. The innovative concept of reusable rockets requires, from the point of view of HM implementation, not only the evaluation of the vehicle health status but also the prediction of the reusability of the individual subsystems w.r.t. the next launch cycle. Therefore, the goal of this work is divided in two parts. The former is to identify the most critical points for the development of reusable rockets, focusing on theoretical working conditions and analysis or failures. The latter is to discuss the sensing units useful for addressing the defined points, describing the possible innovative approaches for sensing the system conditions. Among them, piezoelectric units, fiber optics, imaging units, and conductive layers can be identified for enhancing the comprehension of the system working conditions

    Thermoelectric Generators on Satellites—An Approach for Waste Heat Recovery in Space

    No full text
    Environmental radiation in space (from the Sun, etc.) and operational thermal loads result in heat flows inside the structure of satellites. Today these heat flows remain unused and are collected, transported to a radiator and emitted to space to prevent the satellite from overheating, but they hold a huge potential to generate electrical power independently of solar panels. Thermoelectric generators are a promising approach for such applications because of their solid state characteristics. As they do not have any moving parts, they do not cause any vibrations in the satellite. They are said to be maintenance-free and highly reliable. Due to the expected small heat flows modern devices based on BiTe have to be considered, but these devices have no flight heritage. Furthermore, energy harvesting on space systems is a new approach for increasing the efficiency and reliability. In this paper, different systems studies and applications are discussed based some experimental characterisation of the electrical behaviour and their dependence on thermal cycles and vibration

    Electrical behaviour of carbon nanotubes under low-energy proton irradiation

    No full text
    Several applications for carbon nanotubes (CNT) have been proposed for space applications in the last years. However, their behaviour in the harsh space environment is mostly unknown. Energetic particles such as protons can influence the material degradation in space. This material damage could result in a system failure of space systems. Therefore it is necessary to investigate the performance of new materials under proton irradiation. Screen and jet printed disordered single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT) and multi-walled carbon nanotubes/resin composites (ME) were exposed to 1 keV, 15 keV and 100 keV protons. The electrical behaviour of the CNT conductor paths was measured during the experiment. After this exposure, the CNTs were analyzed using Raman scattering and a scanning electron microscope (SEM). Their is a clear evidence that proton radiation can destroy carbon nanotubes and influence their electrical performance

    A printable paste based on a stable n-Type Poly[Ni-tto] semiconducting polymer

    Get PDF
    Polynickeltetrathiooxalate (poly[Ni-tto]) is an n-type semiconducting polymer having outstanding thermoelectric characteristics and exhibiting high stability under ambient conditions. However, its insolubility limits its use in organic electronics. This work is devoted to the production of a printable paste based on a poly[Ni-tto]/PVDF composite by thoroughly grinding the powder in a ball mill. The resulting paste has high homogeneity and is characterized by rheological properties that are well suited to the printing process. High-precision dispenser printing allows one to apply both narrow lines and films of poly[Ni-tto]-composite with a high degree of smoothness. The resulting films have slightly better thermoelectric properties compared to the original polymer powder. A flexible, fully organic double-leg thermoelectric generator with six thermocouples was printed by dispense printing using the poly[Ni-tto]-composite paste as n-type material and a commercial PEDOT-PSS paste as p-type material. A temperature gradient of 100 K produces a power output of about 20 nW

    A material experiment for small satellites to characterise the behaviour of carbon nanotubes in space - development and ground validation

    Get PDF
    Over the last years, Carbon Nanotubes (CNT) drew interdisciplinary attention. Regarding space technologies a variety of potential applications were proposed and investigated. However, no complex data on the behaviour and degradation process of carbon nanotubes under space environment exist. Therefore, it is necessary to investigate the performance of these new materials in space environment and to revaluate the application potential of CNTs in space technologies. Hence, CiREX (Carbon Nanotubes – Resistance Experiment) was developed as a part of a student project. It is a small and compact experiment, which is designed for CubeSat class space satellites. These are a class of nanosatellites with a standardized size and shape. The CiREX design, electrical measurements and the satellites interfaces will be discussed in detail. CiREX is the first in-situ space material experiment for CNTs. To evaluate the data obtained from CiREX, ground validation tests are mandatory. As part of an extensive test series the behaviour of CNTs under solar ultra violet light (UV) and vacuum ultraviolet light (VUV) was examined. Single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT) and MWNT/resin composite (ME) were exposed to different light sources. After the exposure, the defect density was investigated with Raman spectroscopy. There is a clear indication that UV and VUV light can increase the defect density of untreated CNTs and influence the electrical behaviour
    corecore