45 research outputs found

    New analysis in the field of open cluster Collinder 223

    Full text link
    The present study of the open cluster Collinder 223 (Cr 223) has been mainly depended on the photoelectric data of Claria & Lapasset (1991; hereafter CL91). This data of CL91 has been used with the cluster's image of AAO-DSS in order to re-investigate and improve the main parameters of Cr 223. Stellar count has been achieved to determine the stellar density, the cluster's center and the cluster's diameter. In addition, the luminosity function, mass function, and the total mass of the cluster have been estimated.Comment: 12 pages, 8 figure

    Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps

    Full text link
    We investigate single ions of 40Ca+^{40}Ca^+ in Paul traps for quantum information processing. Superpositions of the S1/2_{1/2} electronic ground state and the metastable D5/2_{5/2} state are used to implement a qubit. Laser light on the S1/2↔_{1/2} \leftrightarrow D5/2_{5/2} transition is used for the manipulation of the ion's quantum state. We apply sideband cooling to the ion and reach the ground state of vibration with up to 99.9% probability. Starting from this Fock state ∣n=0>|n=0>, we demonstrate coherent quantum state manipulation. A large number of Rabi oscillations and a ms-coherence time is observed. Motional heating is measured to be as low as one vibrational quantum in 190 ms. We also report on ground state cooling of two ions.Comment: 12 pages, 6 figures. submitted to Journal of Modern Optics, Special Issue on Quantum Optics: Kuehtai 200

    A multi-wavelength study of a double intermediate-mass protostar - from large-scale structure to collimated jets

    Full text link
    (abridged) We study a previously discovered protostellar source that is deeply embedded and drives an energetic molecular outflow. The source, UYSO1, is located close to IRAS 07029-1215 at a distance of ~1 kpc. The multi-wavelength observations resulted in the detection of a double intermediate-mass protostar at the location of UYSO1. In addition to the associated molecular outflow, with a projected size of 0.25 pc, two intersecting near-infrared jets with projected sizes of 0.4 pc and 0.2 pc were found. However, no infrared counterparts to the driving sources could be detected in sensitive near- to far-infrared observations. In interferometric millimeter observations, UYSO1 was resolved into two continuum sources with high column densities and gas masses of 3.5 Mo and 1.2 Mo, with a linear separation of 4200 AU. We report the discovery of a H2O maser toward one of the two sources. The total luminosity is roughly estimated to be ~50 Lo, shared by the two components, one of which is driving the molecular outflow that has a dynamical timescale of less than a few thousand years. The jets of the two individual components are not aligned. Submillimeter observations show that the region lacks typical hot-core chemistry. We thus find two protostellar objects, whose associated circumstellar and parent core masses are high enough to suggest that they may evolve into intermediate-mass stars. This is corroborated by their association with a very massive and energetic CO outflow, suggesting high protostellar accretion rates. The short dynamical timescale of the outflow, the pristine chemical composition of the cloud core and absence of hot core tracers, the absence of detectable radio continuum emission, and the very low protostellar luminosity argue for an extremely early evolutionary stage.Comment: 10 pages, 10 figures, accepted for publication in A&A; minor changes: typos corrected, revised argument in Section

    Maximum stellar mass versus cluster membership number revisited

    Full text link
    We have made a new compilation of observations of maximum stellar mass versus cluster membership number from the literature, which we analyse for consistency with the predictions of a simple random drawing hypothesis for stellar mass selection in clusters. Previously, Weidner and Kroupa have suggested that the maximum stellar mass is lower, in low mass clusters, than would be expected on the basis of random drawing, and have pointed out that this could have important implications for steepening the integrated initial mass function of the Galaxy (the IGIMF) at high masses. Our compilation demonstrates how the observed distribution in the plane of maximum stellar mass versus membership number is affected by the method of target selection; in particular, rather low n clusters with large maximum stellar masses are abundant in observational datasets that specifically seek clusters in the environs of high mass stars. Although we do not consider our compilation to be either complete or unbiased, we discuss the method by which such data should be statistically analysed. Our very provisional conclusion is that the data is not indicating any striking deviation from the expectations of random drawing.Comment: 7 pages, 3 Figures; accepted by MNRAS; Reference added

    Structure of the Large Magellanic Cloud from 2MASS

    Get PDF
    We derive structural parameters and evidence for extended tidal debris from star count and preliminary standard candle analyses of the Large Magellanic Cloud based on Two Micron All Sky Survey (2MASS) data. The full-sky coverage and low extinction in K_s presents an ideal sample for structural analysis of the LMC. The star count surface densities and deprojected inclination for both young and older populations are consistent with previous work. We use the full areal coverage and large LMC diameter to Galactrocentric distance ratio to infer the same value for the disk inclination based on perspective. A standard candle analysis based on a sample of carbon long-period variables (LPV) in a narrow color range, 1.6<J-K_s<1.7 allows us to probe the three-dimensional structure of the LMC along the line of sight. The intrinsic brightness distribution of carbon LPVs in selected fields implies that \sigma_M\simlt 0.2^m for this color cut. The sample provides a {\it direct} determination of the LMC disk inclination: 42.3∘±7.2∘42.3^\circ\pm 7.2^\circ. Distinct features in the photometric distribution suggest several distinct populations. We interpret this as the presence of an extended stellar component of the LMC, which may be as thick as 14 kpc, and intervening tidal debris at roughly 15 kpc from the LMC.Comment: 24 pages, 9 figures. Submitted to Ap

    Quantum state engineering on an optical transition and decoherence in a Paul trap

    Get PDF
    A single Ca+ ion in a Paul trap has been cooled to the ground state of vibration with up to 99.9% probability. Starting from this Fock state |n=0> we have demonstrated coherent quantum state manipulation on an optical transition. Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar number of Rabi oscillations after preparation of the ion in the |n=1> Fock state. The coherence of optical state manipulation is only limited by laser and ambient magnetic field fluctuations. Motional heating has been measured to be as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure

    The Parker Instability in 3-D: Corrugations and Superclouds Along the Carina-Sagittarius Arm

    Full text link
    Here we present three-dimensional MHD models for the Parker instability in a thick magnetized disk, including the presence of a spiral arm. The BB-field is assumed parallel to the arm, and the model results are applied to the optical segment of the Carina-Sagittarius arm. The characteristic features of the undular and interchange modes are clearly apparent in the simulations. The undular mode creates large gas concentrations distributed along the arm. This results in a clear arm/inter-arm difference: the instability triggers the formation of large interstellar clouds inside the arms, but generates only small structures with slight density enhancements in the inter-arm regions. The resulting clouds are distributed in an antisymmetric way with respect to the midplane, creating an azimuthal corrugation along the arm. For conditions similar to those of the optical segment of the Carina-Sagittarius arm, it has a wavelength of about 2.4 kpc. This structuring can explain the origin of both HI superclouds and the azimuthal corrugations in spiral arms. The wavelength matches the corrugation length derived with the young stellar groups located in the optical segment of the Carina-Sagittarius arm. Keywords: Galaxy: kinematics and dynamics -- Galaxy: structure -- Instabilities -- ISM: clouds -- ISM: magnetic fields -- ISM: structure -- MHDComment: 29 pages, 12 figures, Latex, Accepted by the Astrophysical Journa

    Solar-Type Post-T Tauri Stars in the Nearest OB Subgroups

    Full text link
    I discuss results from the recent spectroscopic survey for solar-type pre-MS stars in the Lower Centaurus-Crux (LCC) and Upper Centaurus-Lupus (UCL) OB subgroups by Mamajek, Meyer, & Liebert (2002, AJ, 124, 1670). LCC and UCL are subgroups of the Sco-Cen OB association, and the two nearest OB subgroups to the Sun. In the entire survey of 110 pre-main sequence stars, there exists only one Classical T Tauri star (PDS 66), implying that only ~1% of ~1 Msun stars are still accreting at age 13±\pm7 (1σ\sigma) Myr. Accounting for observational errors, the HRD placement of the pre-MS stars is consistent with the bulk of star-formation taking place within 5-10 Myr. In this contribution, I estimate conservative upper limits to the intrinsic velocity dispersions of the post-T Tauri stars in the LCC and UCL subgroups (<1.6 km/s and <2.2 km/s, respectively; 95% CL) using Monte-Carlo simulations of Tycho-2 proper motions for candidate subgroup members. I also demonstrate that a new OB subgroup recently proposed to exist in Chamaeleon probably does not.Comment: 8 pages, 2 figures, to appear in proceedings for "Open Issues in Local Star Formation and Early Stellar Evolution", eds. J. Gregorio-Hetem & J. Lepine. Minor edits (5/30/03

    Optical fibers with interferometric path length stability by controlled heating for transmission of optical signals and as components in frequency standards

    Full text link
    We present a simple method to stabilize the optical path length of an optical fiber to an accuracy of about 1/100 of the laser wavelength. We study the dynamic response of the path length to modulation of an electrically conductive heater layer of the fiber. The path length is measured against the laser wavelength by use of the Pound-Drever-Hall method; negative feedback is applied via the heater. We apply the method in the context of a cryogenic resonator frequency standard.Comment: Expanded introduction and outlook. 9 pages, 5 figure
    corecore