2 research outputs found

    Stau Search in IceCube

    Get PDF
    The tau lepton’s supersymmetric partner, the stau, appears in some models as the next-to-lightest supersymmetric particle. Their deacy process into the lightest superpartner is usually suppressed by supersymmetry breaking, which makes it a long-lived particle. In this scenario, its signature is a long, minimally ionizing track when traveling through the IceCube detector. Independent of their primary energy, the stau tracks appear like low-energy muons in the detector. A potential signal of staus would thus be an excess over muon tracks induced by atmospheric muon neutrinos. Our analysis focuses on the region around the horizon as here the ratio between stau signal and atmospheric background is largest. We will present the first sensitivity to constrain the stau mass using IceCube and demonstrate the potential of this analysis with future improvements

    Carbon erosion/deposition on the divertor of W7-X during the operational period OP 1.2b

    No full text
    Carbon net erosion and deposition at the test divertor unit (TDU) of Wendelstein 7-X (W7-X) were measured for the discharge period OP 1.2b in the year 2018 using 18 specially prepared target elements in all 10 TDUs. These had lengths between 30 and 60 cm and were coated with marker layers for erosion/deposition investigations of 5–10 μm carbon on top of about 300 nm molybdenum. The marker layer thicknesses were measured by elastic backscattering spectrometry (EBS) before and after plasma exposure using 2.5 MeV protons; the surface morphology was investigated using scanning electron microscopy (SEM) and focused ion beam cross-sectioning (FIB), the surface roughness was determined using a two-dimensional optical profiler. Plasma-exposed surfaces were considerably smoother than unexposed surfaces with decreased mean roughness and a shift of the inclination angle distribution towards lower values. The erosion on the 10 TDUs was unequal within a factor of about two. During the discharge period in total 20.4 ± 5.7 g carbon was eroded from the 10 TDUs. Adjacent to the strike line some deposition of carbon was observed. Compared to the discharge period OP 1.2a in the year 2017, the net carbon erosion rate dropped by a factor of 5–6 due to regular boronizations, which reduced the oxygen (and subsequently also the carbon) content in the plasma by 1–2 orders of magnitude. The significance of erosion/deposition processes for long-pulse discharges is discussed
    corecore