63,280 research outputs found

    Consideration of the relationship between Kepler and cyclotron dynamics leading to prediction of a non-MHD gravity-driven Hamiltonian dynamo

    Get PDF
    Conservation of canonical angular momentum shows that charged particles are typically constrained to stay within a poloidal Larmor radius of a poloidal magnetic flux surface. However, more detailed consideration shows that particles with a critical charge to mass ratio can have zero canonical angular momentum and so be both immune from centrifugal force and not constrained to stay in the vicinity of a specific flux surface. Suitably charged dust grains can have zero canonical angular momentum and in the presence of a gravitational field will spiral inwards across poloidal magnetic surfaces toward the central object and accumulate. This accumulation results in a gravitationally-driven dynamo, i.e., a mechanism for converting gravitational potential energy into a battery-like electric power source.Comment: 14 pages, 1 figur

    Transient and steady-state shear banding in a lamellar phase as studied by Rheo-NMR

    Get PDF
    Flow fields and shear-induced structures in the lamellar (L-alpha) phase of the system triethylene glycol mono n-decyl ether (C10E3)/water were investigated by NMR velocimetry, diffusometry, and H-2 NMR spectroscopy. The transformation from multilamellar vesicles (MLVs) to aligned planar lamellae is accompanied by a transient gradient shear banding. A high-shear-rate band of aligned lamellae forms next to the moving inner wall of the cylindrical Couette shear cell while a low-shear-rate band of the initial MLV structure remains close to the outer stationary wall. The band of layers grows at the expense of the band of MLVs until the transformation is completed. This process scales with the applied strain. Wall slip is a characteristic of the MLV state, while aligned layers show no deviation from Newtonian flow. The homogeneous nature of the opposite transformation from well aligned layers to MLVs via an intermediate structure resembling undulated multilamellar cylinders is confirmed. The strain dependence of this transformation appears to be independent of temperature. The shear diagram, which represents the shear-induced structures as a function of temperature and shear rate, contains a transition region between stable layers and stable MLVs. The steady-state structures in the transition region show a continuous change from layer-like at high temperature to MLV-like at lower temperature. These structures are homogeneous on a length scale above a few micrometers

    SkyMapper and the Southern Sky Survey - a resource for the southern sky

    Full text link
    SkyMapper is amongst the first of a new generation of dedicated, wide-field survey telescopes. The 1.3m SkyMapper telescope features a 5.7 square degree field-of-view Cassegrain imager and will see first light in late 2007. The primary goal of the facility is to conduct the Southern Sky Survey a six colour, six epoch survey of the southern sky. The survey will provide photometry for objects between 8th and 23rd magnitude with global photometric accuracy of 0.03 magnitudes and astrometry to 50 mas. This will represent a valuable scientific resource for the southern sky and in addition provide a basis for photometric and astrometric calibration of imaging data.Comment: 6 pages, 4 figures, proceedings of ESO Calibration Workshop 200

    Spectral Properties of Magnetic Excitations in Cuprate Two-Leg Ladder Systems

    Full text link
    This article summarizes and extends the recent developments in the microscopic modeling of the magnetic excitations in cuprate two-leg ladder systems. The microscopic Hamiltonian comprises dominant Heisenberg exchange terms plus an additional four-spin interaction which is about five times smaller. We give an overview over the relevant energies like the one-triplon dispersion, the energies of two-triplon bound states and the positions of multi-triplon continua and over relevant spectral properties like spectral weights and spectral densities in the parameter regime appropriate for cuprate systems. It is concluded that an almost complete understanding of the magnetic excitations in undoped cuprate ladders has been obtained as measured by inelastic neutron scattering, inelastic light (Raman) scattering and infrared absorption.Comment: 26 pages, 10 figures, review for Mod. Phys. Lett.

    Pion electromagnetic form factor at spacelike momenta

    Get PDF
    A novel method is employed to compute the pion electromagnetic form factor, F_\pi(Q^2), on the entire domain of spacelike momentum transfer using the Dyson-Schwinger equation (DSE) framework in quantum chromodynamics (QCD). The DSE architecture unifies this prediction with that of the pion's valence-quark parton distribution amplitude (PDA). Using this PDA, the leading-order, leading-twist perturbative QCD result for Q^2 F_\pi(Q^2) underestimates the full computation by just 15% on Q^2>~8GeV^2, in stark contrast with the result obtained using the asymptotic PDA. The analysis shows that hard contributions to the pion form factor dominate for Q^2>~8GeV^2 but, even so, the magnitude of Q^2 F_\pi(Q^2) reflects the scale of dynamical chiral symmetry breaking, a pivotal emergent phenomenon in the Standard Model.Comment: 5 pages, 2 figures. To appear in Phys. Rev. Let
    • …
    corecore