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A novel method is employed to compute the pion electromagnetic form factor, F�ðQ2Þ, on the entire

domain of spacelike momentum transfer using the Dyson-Schwinger equation (DSE) framework in QCD.

The DSE architecture unifies this prediction with that of the pion’s valence-quark parton distribution

amplitude (PDA). Using this PDA, the leading-order, leading-twist perturbative QCD result forQ2F�ðQ2Þ
underestimates the full computation by just 15% on Q2 * 8 GeV2, in stark contrast to the result obtained

using the asymptotic PDA. The analysis shows that hard contributions to the pion form factor dominate for

Q2 * 8 GeV2, but, even so, the magnitude of Q2F�ðQ2Þ reflects the scale of dynamical chiral symmetry

breaking, a pivotal emergent phenomenon in the standard model.
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Introduction.—The pion occupies a special place in
nuclear and particle physics. It is the archetype for
meson-exchange forces [1] and hence, even today, plays
a critical role as an elementary field in the nuclear structure
Hamiltonian [2–4]. On the other hand, following introduc-
tion of the constituent-quark model [5,6], the pion came to
be considered as an ordinary quantum mechanical bound
state of a constituent-quark and constituent-antiquark. In
that approach, however, explaining its properties requires a
finely tuned potential [7].

The modern paradigm views the pion in a very different
manner [8]: it is both a conventional bound state in quantum
field theory and the Goldstone mode associated with dy-
namical chiral symmetry breaking (DCSB) in QCD, the
strong interaction sector of the standard model. Given this
apparent dichotomy, fine-tuning should not play any role
in a veracious explanation of pion properties. The pion’s
peculiarly low (leptonlike) mass, its strong couplings to
baryons, and numerous other characteristics are all
unavoidable consequences of chiral symmetry and the pat-
tern by which it is broken in the standard model. Therefore,
descriptions of the pion within frameworks that cannot
faithfully express symmetries and their breaking patterns
(such as constituent-quark models) are unreliable.

The fascination of the pion is compounded by the exis-
tence of exact results for both soft and hard processes. For
example, there are predictions for low-energy �� scatter-
ing [9,10] and the neutral pion’s two-photon decay [11,12],
and, on the other hand, perturbative QCD (pQCD) yields
predictions for pion elastic and transition form factors at
asymptotically high energies [13–15]. The empirical veri-
fication of the low-energy results [16,17] is complemented
by a determined experimental effort to test the high-energy
form-factor predictions [18–23]. In contrast to the low-
energy experiments, however, which check global

symmetries and breaking patterns that might be character-
istic of a broad class of theories, the high-energy experi-
ments are a direct probe of QCD itself, and some would
argue that QCD has not passed these tests.
We do not share this view, given that QCD’s failure was

also suggested in connection with measurements of the
pion’s valence-quark distribution function [24] and that
those claims are now known to be erroneous [25–29].
Nevertheless, an explanation is required for the mismatch
between extant experiments on the pion’s electromagnetic
form factor and what is commonly presumed to be the
prediction of pQCD.
The QCD prediction can be stated succinctly [13–15]:

9Q0 >�QCD jQ2F�ðQ2Þ �Q2>Q2
0
16��sðQ2Þf2�w2

’; (1)

where f� ¼ 92:2 MeV is the pion decay constant [30],

�sðQ2Þ ¼ 4�=½�0 lnðQ2=�2
QCDÞ�; (2)

�0 ¼ 11� ð2=3Þnf (nf is the number of active quark

flavors), is the leading-order expression for the strong
running coupling, and

w’ ¼ 1

3

Z 1

0
dx

1

x
’�ðxÞ; (3)

where’�ðxÞ is the pion’s valence-quark parton distribution
amplitude (PDA). The value of Q0 is not predicted by
pQCD. (Here, �QCD � 0:2 GeV is the natural mass scale

of QCD, whose dynamical generation through quantization
spoils the conformal invariance of the classical massless
theory [31–33].)
Notably, w’ ¼ 1 if one uses the ‘‘asymptotic’’

PDA [13–15]

’�ðxÞ ¼ ’
asy
� ðxÞ ¼ 6xð1� xÞ: (4)
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This form of the PDA is certainly valid on the domain
�2

QCD=Q
2 ’ 0. As explained elsewhere [34], however, the

domain �2
QCD=Q

2 ’ 0 corresponds to very large values of

Q2. This is highlighted by the fact that’asy
� ðxÞ can only be a

good approximation to the pion’s PDAwhen it is accurate
to write u�v ðxÞ � �ðxÞ, where u�v ðxÞ is the pion’s valence-
quark distribution function. This is far from valid at mo-
mentum scales now accessible [25–29].

The perceived disagreement between experiment and
QCD theory is based on an observation that at Q2 ¼
4 GeV2, approximately the midpoint of the domain acces-
sible at next-generation facilities [35], Eqs. (1)–(4) yield

Q2F�ðQ2Þ ¼Q2¼4 GeV2

0:15; (5)

where we have used nf ¼ 4 and �QCD ¼ 0:234 GeV for

illustration [36]. The result in Eq. (5) is a factor of
2.7 smaller than the empirical value quoted at Q2 ¼
2:45 GeV2 [19,20], 0:41þ0:04

�0:03, and a factor of 3 smaller

than that computed at Q2 ¼ 4 GeV2 in Ref. [37]. Notably,
Ref. [37] provided the only prediction for the pointwise
behavior of F�ðQ2Þ that is both applicable on the entire
spacelike domain currently mapped reliably by experiment
and confirmed thereby.

In this case the perception of a mismatch and a real
discrepancy are not equivalent because, as indicated above,
one can convincingly argue that Q2 ¼ 4 GeV2 is not
within the domain �2

QCD=Q
2 ’ 0 upon which Eq. (4) is

valid [34]. This being so and given the successful predic-
tion in Ref. [37], one is naturally led to ask whether the
methods used therein can address the issue of the ultimate
validity of Eq. (1).

Until recently, the answer was ‘‘no,’’ owing to an over-
reliance hitherto on brute numerical methods in such
computations. That has now changed, however, with the
refinement of known methods [38–40] described recently
in association with a computation of the pion’s light-front
wave function [41]. As we illustrate herein, these methods
enable reliable computation of the pion’s electromagnetic
form factor to arbitrarily large Q2 and the correlation of
that result with Eq. (1) using the consistently computed
distribution amplitude, ’�ðxÞ.

Computing the pion form factor.—At leading order in the
systematic and symmetry-preserving Dyson-Schwinger
equation (DSE) truncation scheme introduced in
Refs. [42,43] and reviewed in Refs. [44,45], the pion
form factor is given by

K�F�ðQ2Þ ¼ NctrD
Z d4k

ð2�Þ4 ��ðkþ pf; kþ piÞ
� ��ðki;piÞSðkÞ��ðkf;�pfÞ; (6)

where Q is the incoming photon momentum, pf;i ¼ K �
Q=2, kf;i ¼ kþ pf;i=2, and the remaining trace is over

spinor indices. The other elements in Eq. (6) are the
dressed-quark propagator

SðpÞ ¼ �i� � p�Vðp2; 	2Þ þ �Sðp2; 	2Þ; (7)

which, consistent with Eq. (6), is computed from the
rainbow-truncation gap equation (	 is the renormalization
scale), the pion Bethe-Salpeter amplitude ��ðk;PÞ, com-
puted in rainbow-ladder truncation, and the unamputated
dressed-quark-photon vertex, ��ðkf; kiÞ, which should also
be computed in rainbow-ladder truncation. [The impact of
corrections to the leading-order (rainbow-ladder) compu-
tation is understood. The dominant effect is a modification
of the power associated with the logarithmic running in
Eq. (1). That running is slow and hence the diagrams
omitted have no material impact on the discussion herein.]
The leading-order DSE result for the pion form factor is

now determined once an interaction kernel is specified for
the rainbow gap equation. In common with Ref. [41], we
use the kernel explained in Ref. [36]. The strength of this
interaction is specified by a product: D! ¼ m3

G. With mG

fixed, results for properties of ground-state vector and
flavor-nonsinglet pseudoscalar mesons are independent
of the value of ! 2 ½0:4; 0:6� GeV [46]. We use ! ¼
0:5 GeV. With this kernel, f� ¼ 0:092 GeV is obtained
with mGð	 ¼ 2 GeVÞ ¼ 0:87 GeV.
By using precisely the rainbow-ladder kernel described

in Ref. [41], we are spared the need to solve numerically
for the dressed-quark propagator and pion Bethe-Salpeter
amplitude. Instead, we can employ the generalized
Nakanishi representations for SðpÞ and ��ðk;PÞ described
therein.
That is not the case for ��ðkf; kiÞ, however, because

such a representation is not yet available. We therefore use
the following ansatz, expressed solely in terms of the
functions which characterize the dressed-quark propagator
(q ¼ kf � ki),

��ðkf; kiÞ ¼ ��X1ðkf; kiÞ þ � � kf��� � kiX2ðkf; kiÞ
þ i½� � kf�� þ ��� � ki�X3ðkf; kiÞ
� ~
���q��Sðq2ÞX1ðkf; kiÞ; (8)

where ~
 is a parameter and, with �Fðk2f; k2i Þ ¼ ½Fðk2fÞ �
Fðk2i Þ�=½k2f � k2i �,

X1ðkf; kiÞ ¼ �k2�V
ðk2f; k2i Þ;

X2ðkf; kiÞ ¼ ��V
ðk2f; k2i Þ;

X3ðkf; kiÞ ¼ ��S
ðk2f; k2i Þ:

(9)

Plainly, in using an ansatz instead of solving the
rainbow-ladder Bethe-Salpeter equation for ��ðkf; kiÞ,
we expedite progress toward computing the spacelike
behavior of F�ðQ2Þ. It is a valid procedure so long as
nothing essential to understanding the form factor is lost
thereby. This is established by listing the following fea-
tures of the ansatz. The first two lines in Eq. (8) are
obtained using the gauge technique [47]. Hence, the
vertex satisfies the longitudinal Ward-Green-Takahashi
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identity [48–50], is free of kinematic singularities, reduces
to the bare vertex in the free-field limit, and has the same
Poincaré transformation properties as the bare vertex. With
the term in the third line, the ansatz also includes a dressed-
quark anomalous magnetic moment, made mandatory by
DCSB [51–54] and the transverse Ward-Green-Takahashi
identities [55]. Finally, numerical solutions of the rainbow-
ladder Bethe-Salpeter equation for the vertex [56] and
algebraic analyses of vertex structure [53–55] show that
nonperturbative corrections to the bare vertex are negli-
gible for spacelike momenta Q2 * 1 GeV2. A deficiency
of Eq. (8) is omission of nonanalytic structures associated
with the �-meson pole, but such features have only a
modest impact on Q2r2� & 1, where r� is the pion’s
charge radius, and are otherwise immaterial at spacelike
momenta [57–59].

With each of the elements in Eq. (6) expressed via a
generalized spectral representation, as detailed in
Ref. [41], the computation of F�ðQ2Þ reduces to the act
of summing a series of terms, all of which involve a single
four-momentum integral. The integrand denominator in
every term is a product of k-quadratic forms, each raised
to some power. Within each such term, one employs
a Feynman parametrization in order to combine the
denominators into a single quadratic form, raised to the
appropriate power. A suitably chosen change of variables
then enables one to readily evaluate the four-momentum
integration using standard algebraic methods.

This is the paramount advantage of our technique: it
solves the practical problem of continuing from Euclidean
metric to Minkowski space [60]. As practitioners continue
to find, with gap and Bethe-Salpeter equation solutions
represented only by arrays of numbers, it is nigh impos-
sible to characterize and track complex-valued singular-
ities that movewith increasingQ2 into the domain sampled
by a numerical Euclidean-momentum integration, so that
choosing and following an acceptable integration contour
is practically hopeless.

After calculation of the four-momentum integration,
evaluation of the individual term is complete after one
computes a finite number of simple integrals, namely, the
integrations over Feynman parameters and the spectral
integral. The complete result for F�ðQ2Þ follows after
summing the series.

One aspect of the generalized spectral representations
has not yet been explained. DSE kernels that preserve the
one-loop renormalization group behavior of QCD will
necessarily generate propagators and Bethe-Salpeter
amplitudes with a nonzero anomalous dimension �F,
where F labels the object concerned. Consequently, the
spectral representation must be capable of describing func-
tions of s ¼ p2=�2

QCD that exhibit ln��F ½s� behavior for

s � 1. This is readily achieved by noting that

ln��F ½DðsÞ� ¼ 1

�ð�FÞ
Z 1

0
dxx�F�1 1

½DðsÞ�x ; (10)

where DðsÞ is some function. Such a factor can be
multiplied into any existing spectral representation in
order to achieve the required ultraviolet behavior. [Note
that, for practical applications involving convergent four-
momentum integrals, like those generated by Eq. (6), it is
adequate to develop and use a power law approximation,
viz., ln�F ½DðsÞ� � ½DðsÞ�pF . With pF chosen appropriately,

this is accurate on the material domain and greatly sim-
plifies the subsequent numerical calculation.]
Numerical results.—The pion form factor, computed

from Eq. (6) using the elements and procedures described
above, is depicted as curve A in Fig. 1. Evidently, this
prediction is practically indistinguishable from that
described in Ref. [37] on the spacelike domain Q2 <
4 GeV2, which was the largest value computable reliably
in that study. Critically, however, our prediction extends to
arbitrarily large momentum transfers: owing to our
improved algorithms, it describes an unambiguous con-
tinuation of the earlier DSE prediction to the entire space-
like domain. It thereby achieves a long-standing goal.
The momentum reach of our improved techniques is

emphasized by Fig. 2. We depict the prediction for
F�ðQ2Þ on the domain Q2 2 ½0; 20� GeV2 but have com-
puted the result to Q2 ¼ 100 GeV2. If it were necessary,
reliable results could readily be obtained at even higher
values. That is not required, however, because the long-
standing questions revolving around F�ðQ2Þ, which we
described at the outset, may be answered via Fig. 2.
Before tackling those issues it is important to note that

using ~
 ¼ 0:5, a value commensurate with contemporary
estimates [53–55,61], the dressed-quark anomalous mag-
netic moment term in Eq. (8) has almost no impact on
F�ðQ2Þ; the solid and dot-dashed curves in Fig. 2 are
essentially indistinguishable. Indeed, for Q2 > 4 GeV2

there is no difference and hence, as promised in connection
with Eq. (8), the dressed-quark anomalous magnetic

0 1 2 3 4

Q 2 GeV2

F
Q

2

0

0.2

0.4

0.6

0.8

1

FIG. 1 (color online). Solid curve: Charged pion form factor,
computed with ~
 ¼ 0:5 in Eq. (8); long dashed curve: calcu-
lation in Ref. [37], which is limited to the domain Q2 < 4 GeV2;
dotted curve: monopole form ‘‘1=ð1þQ2=m2

�Þ,’’ where m� ¼
0:775 GeV is the �-meson mass. The data are described in
Ref. [20].
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moment has no bearing on the ultraviolet behavior of the
form factor. On the other hand, it does modestly influence
the pion’s charge radius: r� ¼ 0:64 fm with ~
 ¼ 0,
whereas r� ¼ 0:66 fm with ~
 ¼ 0:5. (Empirically [30],
r� ¼ 0:672� 0:008 fm.) Notably, the radius continues to
grow with increasing ~
. Thus, even though the pion is a
pseudoscalar, the dressed-quark anomalous magnetic
moment alters the pion’s charge distribution. This effect
may be understood as the result of spin-orbit repulsion
between the dressed quarks within the pion, whose rest-
frame wave function necessarily has P-wave components
in a Poincaré-covariant framework [62].

We have stressed that the ultraviolet behavior of F�ðQ2Þ
is of great contemporary interest. A key feature of the
rainbow-ladder prediction for Q2F�ðQ2Þ in Fig. 2 is there-
fore the maximum at Q2 � 6 GeV2. The domain upon
which the flattening of the curve associated with this
extremum is predicted to occur will be accessible to
next-generation experiments [23]. Unfortunately, on this
domain it will still be difficult to distinguish between our
prediction and the monopole fitted to data in Ref. [63].

Drawing connections with perturbative QCD.—A maxi-
mum appears necessary if Q2F�ðQ2Þ is ever to approach
the value predicted by pQCD, Eq. (1). In this connection,
too, our study has something to add. The result in Eq. (5) is
associated with curve E in Fig. 2, which is typically plotted
in such figures and described as the prediction of pQCD.
That would be true if, and only if, the pion’s valence-quark
distribution amplitude were well described by ’asy

� ðxÞ at
the scale Q2 � 4 GeV2. However, that is not the case [34].

The correct comparison with pQCD should be drawn as
follows. Using precisely the interaction that we have
employed herein to compute F�ðQ2Þ, one obtains the
rainbow-ladder truncation result [34,41],

’�ðx;Q2 ¼ 4 GeV2Þ � Npx
pð1� xÞp; (11)

with p ¼ 0:3 and Np ¼ �½2ðpþ 1Þ�=½�ðpþ 1Þ�2. This is

the amplitude which should be used to calculate
the pQCD prediction appropriate for comparison with
contemporary experiments. We depict that computed result
as curve D in Fig. 2 [64]; i.e., this curve is the pQCD
prediction obtained when Eq. (11) is used in Eqs. (1)–(3).
Stated simply, curve D in Fig. 2 is the pQCD prediction

obtained when the pion valence-quark PDA has the form
appropriate to the scale accessible in modern experiments.
Its magnitude is markedly different from that obtained
using the asymptotic PDA in Eq. (4), viz., curve E, which
is only valid at truly asymptotic momenta. The meaning
of ‘‘truly asymptotic’’ is readily illustrated. The PDA in
Eq. (11) produces w2

’ ¼ 3:2, which is to be compared with

the value computed using the asymptotic PDA: wasy
’ ¼ 1:0.

Applying leading-order QCD evolution to the PDA in
Eq. (11), one must reach momentum transfer scales Q2 >
1000 GeV2 before w2

’ < 1:6, i.e., before w2
’ falls below

half its original value.
Summary.—Given the observations above, the near

agreement between the pertinent perturbative QCD predic-
tion in Fig. 2 (curve D) and our predicted form of
Q2F�ðQ2Þ (curve A) is striking. It highlights that a single
DSE interaction kernel, determined fully by just one pa-
rameter and preserving the one-loop renormalization group
behavior of QCD, has completed the task of unifying the
pion’s electromagnetic form factor and its valence-quark
distribution amplitude, and, indeed, numerous other
quantities [44,45,65,66].
Moreover, this leading-order, leading-twist QCD predic-

tion, obtained with a pion valence-quark PDA evaluated at
a scale appropriate to the experiment, Eq. (11), under-
estimates our full computation by merely an approximately
uniform 15% on the domain depicted. The small mismatch
is not eliminated by variation of �QCD within its empirical

bounds, which shifts curve D by only �3% at Q2 ¼
20 GeV2. It is instead explained by a combination of
higher-order, higher-twist corrections to Eq. (1) in
pQCD, on the one hand, and shortcomings in the
rainbow-ladder truncation, which predicts the correct
power law behavior for the form factor but not precisely
the right anomalous dimension in the strong coupling
calculation, on the other hand. Hence, as anticipated earlier
[67] (and expressing a result that can be understood via the
behavior of the dressed-quark mass function [44,45]), one
should expect dominance of hard contributions to the pion
form factor for Q2 * 8 GeV2. Notwithstanding this, the
normalization of the form factor is fixed by a pion wave
function whose dilation with respect to ’asy

� ðxÞ is a

0 5 10 15 20

Q 2 GeV2

Q
2
F Π

Q
2

A

B

C

D

E

0

0.2

0.4

0.6

FIG. 2 (color online). Q2F�ðQ2Þ. Solid curve (A): Prediction
obtained with ~
 ¼ 0:5 in Eq. (8); dot-dashed curve: prediction
obtained with ~
 ¼ 0; long dashed curve: calculation in
Ref. [37], which is limited to the domain Q2 < 4 GeV2, whose
boundary is indicated by the vertical dotted line. Remaining
curves, from top to bottom: dotted curve (B): monopole form
‘‘1=ð1þQ2=m2

�Þ’’; dotted curve (C): monopole form fitted to

data in Ref. [63], with mass scale 0.74 GeV; dot-dot-dashed
curve (D): Eq. (1) computed with ’�ðxÞ in Eq. (11); dot-dot-
dashed curve (E): Eq. (1) computed with ’

asy
� ðxÞ in Eq. (4). The

filled circles and filled squares are the data described in
Ref. [20], and the filled diamonds indicate the projected reach
and accuracy of a forthcoming experiment [23].
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definitive signature of dynamical chiral symmetry break-
ing, which is such a crucial feature of the standard model.
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