3,460 research outputs found

    The Game of Knowledge:Playing at Spiritual Liberation in 18th- and 19th-Century Western India

    Get PDF

    Nonparametric Modeling of Dynamic Functional Connectivity in fMRI Data

    Get PDF
    Dynamic functional connectivity (FC) has in recent years become a topic of interest in the neuroimaging community. Several models and methods exist for both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), and the results point towards the conclusion that FC exhibits dynamic changes. The existing approaches modeling dynamic connectivity have primarily been based on time-windowing the data and k-means clustering. We propose a non-parametric generative model for dynamic FC in fMRI that does not rely on specifying window lengths and number of dynamic states. Rooted in Bayesian statistical modeling we use the predictive likelihood to investigate if the model can discriminate between a motor task and rest both within and across subjects. We further investigate what drives dynamic states using the model on the entire data collated across subjects and task/rest. We find that the number of states extracted are driven by subject variability and preprocessing differences while the individual states are almost purely defined by either task or rest. This questions how we in general interpret dynamic FC and points to the need for more research on what drives dynamic FC.Comment: 8 pages, 1 figure. Presented at the Machine Learning and Interpretation in Neuroimaging Workshop (MLINI-2015), 2015 (arXiv:1605.04435

    Infinite von Mises-Fisher Mixture Modeling of Whole Brain fMRI Data

    Get PDF
    Cluster analysis of functional magnetic resonance imaging (fMRI) data is often performed using gaussian mixture models, but when the time series are standardized such that the data reside on a hypersphere, this modeling assumption is questionable. The consequences of ignoring the underlying spherical manifold are rarely analyzed, in part due to the computational challenges imposed by directional statistics. In this letter, we discuss a Bayesian von Mises–Fisher (vMF) mixture model for data on the unit hypersphere and present an efficient inference procedure based on collapsed Markov chain Monte Carlo sampling. Comparing the vMF and gaussian mixture models on synthetic data, we demonstrate that the vMF model has a slight advantage inferring the true underlying clustering when compared to gaussian-based models on data generated from both a mixture of vMFs and a mixture of gaussians subsequently normalized. Thus, when performing model selection, the two models are not in agreement. Analyzing multisubject whole brain resting-state fMRI data from healthy adult subjects, we find that the vMF mixture model is considerably more reliable than the gaussian mixture model when comparing solutions across models trained on different groups of subjects, and again we find that the two models disagree on the optimal number of components. The analysis indicates that the fMRI data support more than a thousand clusters, and we confirm this is not a result of overfitting by demonstrating better prediction on data from held-out subjects. Our results highlight the utility of using directional statistics to model standardized fMRI data and demonstrate that whole brain segmentation of fMRI data requires a very large number of functional units in order to adequately account for the discernible statistical patterns in the data. </jats:p

    Vertical Axis Wind Turbine Design Load Cases Investigation and Comparison with Horizontal Axis Wind Turbine

    Get PDF
    AbstractThe paper studies the applicability of the IEC 61400-1 ed.3, 2005 International Standard of wind turbine minimum design requirements in the case of an onshore Darrieus VAWT and compares the results of basic Design Load Cases (DLCs) with those of a 3-bladed HAWT. The study is based on aeroelastic computations using the HAWC2 aero-servo-elastic code A 2-bladed 5 MW VAWT rotor is used based on a modified version of the DeepWind rotor For the HAWT simulations the NREL 3-bladed 5 MW reference wind turbine model is utilized Various DLCs are examined including normal power production, emergency shut down and parked situations, from cut-in to cut-out and extreme wind conditions. The ultimate and 1 Hz equivalent fatigue loads of the blade root and turbine base bottom are extracted and compared in order to give an insight of the load levels between the two concepts. According to the analysis the IEC 61400-1 ed.3 can be used to a large extent with proper interpretation of the DLCs and choice of parameters such as the hub-height. In addition, the design drivers for the VAWT appear to differ from the ones of the HAWT. Normal operation results in the highest tower bottom and blade root loads for the VAWT, where parked under storm situation (DLC 6.2) and extreme operating gust (DLC 2.3) are more severe for the HAWT. Turbine base bottom and blade root edgewise fatigue loads are much higher for the VAWT compared to the HAWT. The interpretation and simulation of DLC 6.2 for the VAWT lead to blade instabilities, while extreme wind shear and extreme wind direction change are not critical in terms of loading of the VAWT structure. Finally, the extreme operating gust wind condition simulations revealed that the emerging loads depend on the combination of the rotor orientation and the time stamp that the frontal passage of gust goes through the rotor plane
    • …
    corecore