

Aalborg Universitet

Freely chosen cadence is increased across repeated bouts of submaximal ergometer cycling

Hansen, Ernst Albin; Schmidt, Andreas; Madsen, Jonas Gelardi

Published in: Journal of Science & Cycling

Creative Commons License CC BY-NC-ND 4.0

Publication date: 2022

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Hansen, E. A., Schmidt, A., & Madsen, J. G. (2022). Freely chosen cadence is increased across repeated bouts of submaximal ergometer cycling. *Journal of Science & Cycling*, *11*(2). https://www.jsc-journal.com/index.php/JSC/article/view/718

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Conference abstract

Freely chosen cadence is increased across repeated bouts of submaximal ergometer cycling

Ernst A Hansen*, Andreas Schmidt and Jonas G Madsen

Sport Sciences – Performance and Technology, Department of Health Science and Technology, Aalborg University, Niels Jernes Vej 12, DK-9220 Aalborg, Denmark

* Correspondence: (EAH) eah@hst.aau.dk

Received: 8 February 2022; Accepted: 17 March 2022; Published: 23 September 2022

Abstract: The aim of the present study was to investigate whether the phenomenon of repeated bout rate enhancement occurs during submaximal ergometer cycling. In the present context, repeated bout rate enhancement is defined as an increase of the freely, or spontaneously, chosen cadence during repeated bouts of pedalling. This is for example relevant to study since cadence, and thereby the described phenomenon, can affect physiological and biomechanical responses.

Recreationally active individuals (n=27) performed five consecutive 5-min bouts of ergometer cycling at 100 W. Cadence was freely chosen during all cycling. The bouts were separated by 10-min rest periods. Cadence, heart rate, tympanic temperature, rate of perceived exertion, and pedal force profile characteristics were determined.

The primary result was that cadence at the end of 5. bout (78±23 rpm) was statistically significantly higher than at the end of all other bouts. Overall, the cadence at the end of 5. bout was 15.6%±20.4% higher than at the end of 1. bout. The altered rhythmic motor behaviour was accompanied by a statistically significant effect of bout on heart rate, which amounted to 125±17 and 131±26 beats per min at the end of 1. and 5. bout, respectively. In addition, there was a statistically significant effect of bout on pedal force.

It is possible that the observed alteration of cadence occurred as a nonconscious rhythmogenesis process. A neuromodulation in form of a net excitation of relevant parts of the nervous system might explain the altered cadence. The results might have implications for testing and research.

In conclusion, the phenomenon of repeated bout rate enhancement during submaximal ergometer cycling was observed in the present study. Thus, the freely chosen cadence showed an increase of on average about 15%, or 10 rpm, as accumulated values across the five consecutive bouts of ergometer cycling.

Keywords: motor control; pedal rate; pedaling frequency; rhythmogenesis; testing

