3,738 research outputs found

    The HI gas content of galaxies around Abell 370, a galaxy cluster at z = 0.37

    Full text link
    We used observations from the Giant Metrewave Radio Telescope to measure the atomic hydrogen gas content of 324 galaxies around the galaxy cluster Abell 370 at a redshift of z = 0.37 (a look-back time of ~4 billion years). The HI 21-cm emission from these galaxies was measured by coadding their signals using precise optical redshifts obtained with the Anglo-Australian Telescope. The average HI mass measured for all 324 galaxies is (6.6 +- 3.5)x10^9 solar masses, while the average HI mass measured for the 105 optically blue galaxies is (19.0 +- 6.5)x10^9 solar masses. The significant quantities of gas found around Abell 370, suggest that there has been substantial evolution in the gas content of galaxy clusters since redshift z = 0.37. The total amount of HI gas found around Abell 370 is up to ~8 times more than that seen around the Coma cluster, a nearby galaxy cluster of similar size. Despite this higher gas content, Abell 370 shows the same trend as nearby clusters, that galaxies close to the cluster core have lower HI gas content than galaxies further away. The Abell 370 galaxies have HI mass to optical light ratios similar to local galaxy samples and have the same correlation between their star formation rate and HI mass as found in nearby galaxies. The average star formation rate derived from [OII] emission and from de-redshifted 1.4 GHz radio continuum for the Abell 370 galaxies also follows the correlation found in the local universe. The large amounts of HI gas found around the cluster can easily be consumed by the observed star formation rate in the galaxies over the ~4 billion years (from z = 0.37) to the present day.Comment: accepted by MNRA

    The Mount Stromlo Abell Cluster Supernova Search

    Get PDF
    We have initiated a three-year project to find supernovae (SNe) in a well-defined sample of high-density southern Abell clusters with redshifts z0.08z\leq0.08. These observations will provide a volume-limited sample of SNe Ia to more than a magnitude below their peak brightness, and will enable us to: (1) measure the luminosity function of SNe, (2) further explore the correlation of light curve shape with the absolute luminosity of SNe Ia to better understand SNe Ia as distance indicators, (3) measure SN rates, (4) measure the bulk motion of the Local Group using SNe Ia, and (5) directly compare SN Ia distances to brightest cluster galaxy distances. We use the MaCHO wide-field 2-color imager on the 1.3m telescope at Mount Stromlo to routinely monitor 12\sim 12 clusters per week. We describe our technique for target selection and scheduling search observations, and for finding and identifying SN candidates. We also describe the results from the first year of our program, including the detection of 19 SNe, several RR-Lyrae variables, and hundreds of asteroids.Comment: 20 pages, 10 figures, 3 tables. Accepted for publication in AJ, Jan. 1998 issu

    An Experimental Examination of Activist Type and Effort on Brand Image and Purchase Intentions

    Get PDF
    In 2016, several prominent athletes kneeled or sat during the national anthem of their games to protest social injustice in America. For their activism, these athletes inconsistently experienced both positive and negative consequences from their sponsors and fans. Therefore, the purpose of this study was to investigate this phenomenon more closely by examining the effect of activism type and activism effort on a sponsor’s brand image and purchase intention of a product the athlete endorses, when controlling for brand familiarity. Participants (N = 384) were randomly assigned into groups in a 2 (activism type: safe, risky) x 2 (activism effort: low, high) experimental study. Results indicated brand image and purchase intention were negatively impacted by risky activism compared to safe activism, but activism effort had no effect on the two variables. Further implications and future research are expanded upon in the discussion

    SN1997cy/GRB970514 - A New Piece in the GRB Puzzle?

    Full text link
    We present observations of SN1997cy, a supernova discovered as part of the Mount Stromlo Abell Cluster SN Search, which does not easily fit into the traditional classification scheme for supernovae. This object's extraordinary optical properties and coincidence with GRB970514, a short duration gamma ray burst, suggest a second case, after SN1998bw/GRB980425, for a SN-GRB association. SN1997cy is among the most luminous SNe yet discovered and has a peculiar spectrum. We present evidence that SN1997cy ejected approximately 2 solar masses of 56Ni, supported by its late-time light curve, and FeII/[FeIII] lines in its spectrum, although it is possible that both these observations can be explained via circumstellar interaction. While SN1998bw and SN1997cy appear to be very different objects with respect to both their gamma ray and optical properties, SN1997cy and the optical transient associated with GRB970508 have roughly similar late-time optical behavior. This similarity may indicate that the late-time optical output of these two intrinsically bright transient events have a common physical process. Although the connection between GRB970514 and SN1997cy is suggestive, it is not conclusive. However, if this association is real, followup of short duration GRBs detected with BATSE or HETE2 should reveal objects similar to SN1997cy.Comment: 26 pages including 6 postscript figures and 3 tables. Submitted to ApJ. Re-calibrated photometry - objects are about 0.3mags brighter than in original versio

    Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization

    Get PDF
    Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch. However, at the highest redshifts (z>7.5z>7.5; lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z>7.5z>7.5. We detected the Lyman-α\alpha emission line at 10504\sim 10504 {\AA} in two separate observations with MOSFIRE on the Keck I Telescope and independently with the Hubble Space Telescope's slit-less grism spectrograph, implying a source redshift of z=7.640±0.001z = 7.640 \pm 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z=0.545z = 0.545), with an estimated intrinsic luminosity of MAB=19.6±0.2M_{AB} = -19.6 \pm 0.2 mag and a stellar mass of M=3.00.8+1.5×108M_{\star} = 3.0^{+1.5}_{-0.8} \times 10^8 solar masses. Both are an order of magnitude lower than the four other Lyman-α\alpha emitters currently known at z>7.5z > 7.5, making it probably the most distant representative source of reionization found to date

    Detection of Lyman-Alpha Emission From a Triple Imaged z=6.85 Galaxy Behind MACS J2129.4-0741

    Get PDF
    We report the detection of Lyα\alpha emission at 9538\sim9538\AA{} in the Keck/DEIMOS and \HST WFC3 G102 grism data from a triply-imaged galaxy at z=6.846±0.001z=6.846\pm0.001 behind galaxy cluster MACS J2129.4-0741. Combining the emission line wavelength with broadband photometry, line ratio upper limits, and lens modeling, we rule out the scenario that this emission line is \oii at z=1.57z=1.57. After accounting for magnification, we calculate the weighted average of the intrinsic Lyα\alpha luminosity to be 1.3×1042 erg s1\sim1.3\times10^{42}~\mathrm{erg}~\mathrm{s}^{-1} and Lyα\alpha equivalent width to be 74±1574\pm15\AA{}. Its intrinsic UV absolute magnitude at 1600\AA{} is 18.6±0.2-18.6\pm0.2 mag and stellar mass (1.5±0.3)×107 M(1.5\pm0.3)\times10^{7}~M_{\odot}, making it one of the faintest (intrinsic LUV0.14 LUVL_{UV}\sim0.14~L_{UV}^*) galaxies with Lyα\alpha detection at z7z\sim7 to date. Its stellar mass is in the typical range for the galaxies thought to dominate the reionization photon budget at z7z\gtrsim7; the inferred Lyα\alpha escape fraction is high (10\gtrsim 10\%), which could be common for sub-LL^* z7z\gtrsim7 galaxies with Lyα\alpha emission. This galaxy offers a glimpse of the galaxy population that is thought to drive reionization, and it shows that gravitational lensing is an important avenue to probe the sub-LL^* galaxy population.Comment: Accepted by ApJ Letter

    Spitzer UltRa Faint SUrvey Program (SURFS UP). II. IRAC-Detected Lyman-Break Galaxies at 6 < z < 10 Behind Strong-Lensing Clusters

    Get PDF
    We study the stellar population properties of the IRAC-detected 6z106 \lesssim z \lesssim 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program (SURFS UP). Using the Lyman Break selection technique, we find a total of 16 new galaxy candidates at 6z106 \lesssim z \lesssim 10 with S/N3S/N \geq 3 in at least one of the IRAC 3.6μ3.6\mum and 4.5μ4.5\mum bands. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of 1.2\sim 1.2--5.55.5. We find that the IRAC-detected 6z106 \lesssim z \lesssim 10 sample is likely not a homogeneous galaxy population: some are relatively massive (stellar mass as high as 4×109M4 \times 10^9\,M_{\odot}) and evolved (age 500\lesssim 500 Myr) galaxies, while others are less massive (Mstellar108MM_{\text{stellar}}\sim 10^8\,M_{\odot}) and very young (10\sim 10 Myr) galaxies with strong nebular emission lines that boost their rest-frame optical fluxes. We identify two Lyα\alpha emitters in our sample from the Keck DEIMOS spectra, one at zLyα=6.76z_{\text{Ly}\alpha}=6.76 (in RXJ1347) and one at zLyα=6.32z_{\text{Ly}\alpha}=6.32 (in MACS0454). We show that IRAC [3.6][4.5][3.6]-[4.5] color, when combined with photometric redshift, can be used to identify galaxies likely with strong nebular emission lines within certain redshift windows.Comment: ApJ in pres

    RCS2 J232727.6-020437: An Efficient Cosmic Telescope at z=0.6986z=0.6986

    Full text link
    We present a detailed gravitational lens model of the galaxy cluster RCS2 J232727.6-020437. Due to cosmological dimming of cluster members and ICL, its high redshift (z=0.6986z=0.6986) makes it ideal for studying background galaxies. Using new ACS and WFC3/IR HST data, we identify 16 multiple images. From MOSFIRE follow up, we identify a strong emission line in the spectrum of one multiple image, likely confirming the redshift of that system to z=2.083z=2.083. With a highly magnified (μ2\mu\gtrsim2) source plane area of 0.7\sim0.7 arcmin2^2 at z=7z=7, RCS2 J232727.6-020437 has a lensing efficiency comparable to the Hubble Frontier Fields clusters. We discover four highly magnified z7z\sim7 candidate Lyman-break galaxies behind the cluster, one of which may be multiply-imaged. Correcting for magnification, we find that all four galaxies are fainter than 0.5L0.5 L_{\star}. One candidate is detected at >10σ{>10\sigma} in both Spitzer/IRAC [3.6] and [4.5] channels. A spectroscopic follow-up with MOSFIRE does not result in the detection of the Lyman-alpha emission line from any of the four candidates. From the MOSFIRE spectra we place median upper limits on the Lyman-alpha flux of 514×1019ergs1cm25-14 \times 10^{-19}\, \mathrm{erg \,\, s^{-1} cm^{-2}} (5σ5\sigma).Comment: 14 pages, 9 figures, submitted to ApJ on 3/06/201
    corecore