5,123 research outputs found

    1953 oil and gas well drilling statistics

    Get PDF
    Includes The development of underground storage in Ohio, by J.J. Schmidt, K.C. Cottingham and Rotary vs cable tool drilling in Ohio, by Robert L. Alkire

    Degradation of Communication Range in VANETs Caused by Interference 2.0 - Real-World Experiment

    Get PDF
    High channel load in vehicle-to-vehicle communication leads to a degradation of the vehicles’ communication range, due to interference and hence packet loss at larger distances. Packet loss results from two or more concurrent transmissions, colliding at receivers located inbetween, which is also known as the hidden station problem. In previous works, our simulation study has shown that this packet loss leads to a degradation of 90% of the communication range. In this paper, we confirm the simulation results by real-world measurements. We present a methodology for transferring the simulation scenario to a real-world measurement scenario, able to evaluate the problem of hidden stations. With three radios applying the IEEE 802.11p standard, we measure the degradation of the communication range under interference. In the measurement, we find a degradation of 50 to 70%. On the one hand, there are less collisions due to only one hidden station. On the other hand, we identify that the receiving vehicle as a shadowing object itself is an additional origin for hiding the other station which slightly increases the number of collisions even at close distances

    Alternating metabolic pathways in NGF-deprived sympathetic neurons affect caspase-independent death

    Get PDF
    Mitochondrial release of cytochrome c in apoptotic cells activates caspases, which execute apoptotic cell death. However, the events themselves that culminate in caspase activation can have deleterious effects because caspase inhibitor–saved cells ultimately die in a caspase-independent manner. To determine what events may underlie this form of cell death, we examined bioenergetic changes in sympathetic neurons deprived of NGF in the presence of a broad-spectrum caspase inhibitor, boc-aspartyl-(OMe)-fluoromethylketone. Here, we report that NGF-deprived, boc-aspartyl-(OMe)-fluoromethylketone–saved neurons rely heavily on glycolysis for ATP generation and for survival. Second, the activity of F0F1 contributes to caspase-independent death, but has only a minor role in the maintenance of mitochondrial membrane potential, which is maintained primarily by electron transport. Third, permeability transition pore inhibition by cyclosporin A attenuates NGF deprivation–induced loss of mitochondrial proteins, suggesting that permeability transition pore opening may have a function in regulating the degradation of mitochondria after cytochrome c release. Identification of changes in caspase inhibitor–saved cells may provide the basis for rational strategies to augment the effectiveness of the therapeutic use of postmitochondrial interventions

    Problems and Current Trends in Rock Magnetism and Paleomagnetism

    Get PDF
    Continental drift, seafloor spreading, plate tectonics: These terms conjure up a picture of the whole of Earth\u27s lithospheric plates in motion, a picture that truly represents a revolution in the earth sciences that took place in the 1960s and permanently changed our view of a more static world. If someone were to ask which subdiscipline of the geosciences has provided the crucial quantitative evidence about the past locations of discrete parts of continental and oceanic plates, the answer would be geomagnetism and paleomagnetism. Polarity stratigraphy, based on radiometrically dated 180° reversals of the dipolar geomagnetic field, informs us about the locations of parts of the seafloor in the past, and paleomagnetically determined paleolatitudes of continental rocks provide similar information about past locations of continental plates

    MASH TL-4 Design and Evaluation of A Restorable Energy-Absorbing Concrete Barrier

    Get PDF
    A new, high-containment longitudinal barrier was designed to reduce the accelerations imparted to passenger vehicles during impacts and to be restorable and reusable. Elastomer support posts were designed to translate laterally and absorb energy when impacted and restore to their initial position after impact events. A hybrid concrete beam and steel tube combination rail was optimized to minimize weight, provide sufficient structural capacity, maintain a height to contain and redirect single-unit trucks, and to prevent passenger vehicles from snagging on the posts. Three full-scale vehicle crash tests were conducted according to Manual for Assessing Safety Hardware (MASH) Test Level (TL-4) safety performance requirements on a 240-ft long barrier with nominal height of 38â…ť in. In test SFH-1, a 5,021-lb pickup truck was redirected with minimal damage to the barrier. The peak lateral acceleration was reduced 47 percent as compared to similar impacts on rigid barriers. In test SFH-2, a 2,406-lb small car was redirected by the barrier, and the peak lateral acceleration was reduced 21 percent as compared to similar impacts on rigid barriers. In test SFH-3, a 21,746-lb single-unit truck was successfully contained and redirected, resulting in only minor damage to the concrete rail. Therefore, the barrier met all MASH TL-4 safety performance criteria. Recommendations about the performance, future design refinements, and installation requirements of the barrier were provided

    Focusing a deterministic single-ion beam

    Full text link
    We focus down an ion beam consisting of single 40Ca+ ions to a spot size of a few mum using an einzel-lens. Starting from a segmented linear Paul trap, we have implemented a procedure which allows us to deterministically load a predetermined number of ions by using the potential shaping capabilities of our segmented ion trap. For single-ion loading, an efficiency of 96.7(7)% has been achieved. These ions are then deterministically extracted out of the trap and focused down to a 1sigma-spot radius of (4.6 \pm 1.3)mum at a distance of 257mm from the trap center. Compared to former measurements without ion optics, the einzel-lens is focusing down the single-ion beam by a factor of 12. Due to the small beam divergence and narrow velocity distribution of our ion source, chromatic and spherical aberration at the einzel-lens is vastly reduced, presenting a promising starting point for focusing single ions on their way to a substrate.Comment: 16 pages, 7 figure

    Exploration of Adaptive Beaconing for Efficient Intervehicle Safety Communication

    Get PDF
    In the future intervehicle communication will make driving safer, easier, and more comfortable. As a cornerstone of the system, vehicles need to be aware of other vehicles in the vicinity. This cooperative awareness is achieved by beaconing, the exchange of periodic single-hop broadcast messages that include data on the status of a vehicle. While the concept of beaconing has been developed in the first phase of research on VANETs, recent studies have revealed limitations with respect to network performance. Obviously, the frequency of beacon messages directly translates into accuracy of cooperative awareness and thus traffic safety. There is an indisputable trade-off between required bandwidth and achieved accuracy. In this work we analyze this trade-off from different perspectives considering the consequences for safety applications. As a solution to the problem of overloading the channel, we propose to control the offered load by adjusting the beacon frequency dynamically to the current traffic situation while maintaining appropriate accuracy. To find an optimal adaptation, we elaborate on several options that arise when determining the beacon frequency. As a result, we propose situation-adaptive beaconing. It depends on the vehicle's own movement and the movement of surrounding vehicles, macroscopic aspects like the current vehicle density, or microscopic aspects

    Advanced carrier sensing to resolve local channel congestion

    Get PDF
    Communication performance in VANETs under high channel load is significantly degraded due to packet collisions and messages drops, also referred to as local channel congestion. So far, research was focused on the control of transmit power and the limitation of the messages rate to mitigate the effects of high load. Few attention has been paid to the carrier sensing setup, i.e controlling WHEN the channel is indicated as clear. In previous work, we identified that the Clear Channel Assessment (CCA) as part of the carrier sensing is a very efficient way of controlling the spatial reuse under high load. The CCA threshold determines at which received power level the channel is sensed busy. In this paper, we propose a stepwise CCA Threshold Adjustment (CTA) depending on how long the packet has been waiting already for medium access. This basic and robust approach mitigates significantly the problem of local message queue drops and hence local congestion. The simulation study confirms the reduction of the average and maximum medium access delay as well as the prevention of message queue drops. Even under inaccurate CCA thresholds among the vehicles, fairness in medium access can be maintained by using CTA. In all cases, the awareness of each vehicle is dramatically improved within the safety-critical area of each vehicle

    Development of a Transition Between an Energy-Absorbing Concrete Barrier and a Rigid Concrete Butress

    Get PDF
    From 2010 to 2015, MwRSF researchers developed the RESTORE barrier, which is a restorable MASH TL-4 median barrier with a steel and concrete rail supported by elastomer posts and steel skids. The research effort reported herein describes the initial development of a transition from the RESTORE barrier to a rigid TL-4 concrete buttress. The previously-developed RESTORE barrier LS-DYNA model was validated against three full-scale vehicle crash tests. Several design concepts were generated through a series of brainstorming efforts. The primary transition concept consisted of a pin and loop connection between the RESTORE barrier and rigid concrete buttress, which was designed and evaluated with LS-DYNA computer simulation. Vehicle and system behavior were investigated using MASH test designation nos. 4-20, 4-21, and 4-22. Six horizontal gusset plates and drop-down pin allowed for limited deflection and rotation at the transition joint, but provided shear continuity between the two systems. A rounded-edge cover plate mitigated vehicle snag on the transition joint hardware. Eleven impact points were evaluated with each vehicle model to determine critical impact points for use in a future full-scale crash testing program. All occupant risk measures and vehicle stability were within MASH limits. Further design modifications are recommended to limit stresses in the transition joint hardware and to reduce excessive occupant compartment deformation that occurred when the small car impacted the concrete buttress end
    • …
    corecore