43,313 research outputs found
A model for orientation effects in electron‐transfer reactions
A method for solving the single‐particle Schrödinger equation with an oblate spheroidal potential of finite depth is presented. The wave functions are then used to calculate the matrix element T_BA which appears in theories of nonadiabatic electron transfer. The results illustrate the effects of mutual orientation and separation of the two centers on TBA. Trends in these results are discussed in terms of geometrical and nodal structure effects. Analytical expressions related to T_BA for states of spherical wells are presented and used to analyze the nodal structure effects for T_BA for the spheroidal wells
On the Cost of Essentially Fair Clusterings
Clustering is a fundamental tool in data mining. It partitions points into
groups (clusters) and may be used to make decisions for each point based on its
group. However, this process may harm protected (minority) classes if the
clustering algorithm does not adequately represent them in desirable clusters
-- especially if the data is already biased.
At NIPS 2017, Chierichetti et al. proposed a model for fair clustering
requiring the representation in each cluster to (approximately) preserve the
global fraction of each protected class. Restricting to two protected classes,
they developed both a 4-approximation for the fair -center problem and a
-approximation for the fair -median problem, where is a parameter
for the fairness model. For multiple protected classes, the best known result
is a 14-approximation for fair -center.
We extend and improve the known results. Firstly, we give a 5-approximation
for the fair -center problem with multiple protected classes. Secondly, we
propose a relaxed fairness notion under which we can give bicriteria
constant-factor approximations for all of the classical clustering objectives
-center, -supplier, -median, -means and facility location. The
latter approximations are achieved by a framework that takes an arbitrary
existing unfair (integral) solution and a fair (fractional) LP solution and
combines them into an essentially fair clustering with a weakly supervised
rounding scheme. In this way, a fair clustering can be established belatedly,
in a situation where the centers are already fixed
Initiating the effective unification of black hole horizon area and entropy quantization with quasi-normal modes
Black hole (BH) quantization may be the key to unlocking a unifying theory of
quantum gravity (QG). Surmounting evidence in the field of BH research
continues to support a horizon (surface) area with a discrete and uniformly
spaced spectrum, but there is still no general agreement on the level spacing.
In this specialized and important BH case study, our objective is to report and
examine the pertinent groundbreaking work of the strictly thermal and
non-strictly thermal spectrum level spacing of the BH horizon area quantization
with included entropy calculations, which aims to tackle this gigantic problem.
In particular, this work exemplifies a series of imperative corrections that
eventually permits a BH's horizon area spectrum to be generalized from strictly
thermal to non-strictly thermal with entropy results, thereby capturing
multiple preceding developments by launching an effective unification between
them. Moreover, the identified results are significant because quasi-normal
modes (QNM) and "effective states" characterize the transitions between the
established levels of the non-strictly thermal spectrum.Comment: 23 pages, review paper. Final version to appear in Advances in High
Energy Physic
Deconstructing (2,0) proposals
C. P. is supported by the U.S. Department of Energy under
Grant No. DE-FG02-96ER40959. M. S. S. is supported by
an EURYI award of the European Science Foundatio
IPCS implications for future supersonic transport aircraft
The Integrated Propulsion Control System (IPCS) demonstrates control of an entire supersonic propulsion module - inlet, engine afterburner, and nozzle - with an HDC 601 digital computer. The program encompasses the design, build, qualification, and flight testing of control modes, software, and hardware. The flight test vehicle is an F-111E airplane. The L.H. inlet and engine will be operated under control of a digital computer mounted in the weapons bay. A general description and the current status of the IPCS program are given
Giant anisotropy of Zeeman splitting of quantum confined acceptors in Si/Ge
Shallow acceptor levels in Si/Ge/Si quantum well heterostructures are
characterized by resonant tunneling spectroscopy in the presence of high
magnetic fields. In a perpendicular magnetic field we observe a linear Zeeman
splitting of the acceptor levels. In an in-plane field, on the other hand, the
Zeeman splitting is strongly suppressed. This anisotropic Zeeman splitting is
shown to be a consequence of the huge light hole-heavy hole splitting caused by
a large biaxial strain and a strong quantum confinement in the Ge quantum well.Comment: 5 figures, 4 page
A search for transit timing variation
Photometric follow-ups of transiting exoplanets (TEPs) may lead to
discoveries of additional, less massive bodies in extrasolar systems. This is
possible by detecting and then analysing variations in transit timing of
transiting exoplanets. In 2009 we launched an international observing campaign,
the aim of which is to detect and characterise signals of transit timing
variation (TTV) in selected TEPs. The programme is realised by collecting data
from 0.6--2.2-m telescopes spread worldwide at different longitudes. We present
our observing strategy and summarise first results for WASP-3b with evidence
for a 15 Earth-mass perturber in an outer 2:1 orbital resonance.Comment: Poster contribution to Detection and Dynamics of Transiting
Exoplanets (Haute Provence Observatory Colloquium, 23-27 August 2010
- …