2,776 research outputs found

    The Rashba Hamiltonian and electron transport

    Full text link
    The Rashba Hamiltonian describes the splitting of the conduction band as a result of spin-orbit coupling in the presence of an external field and is commonly used to model the electronic structure of confined narrow-gap semiconductors. Due to the mixing of spin states some care has to be exercised in the calculation of transport properties. We derive the velocity operator for the Rashba-split conduction band and demonstrate that the transmission of an interface between a ferromagnet and a Rashba-split semiconductor does not depend on the magnetization direction, in contrast with previous assertions in the literature.Comment: one tex file, two figures; paper to appear in this form in PRB (RC

    Comparisons of commercial frozen yogurt with ksu formulation

    Get PDF
    Ten samples of vanilla frozen yogurt were purchased in Kansas and compared to a highprotein, KSU formulation. The KSU formulation had similar solids, fat, and sugar contents as the commercial samples. All commercial samples had lower protein (almost less than half) content and more lactose, and almost all samples had fewer lactic acid bacteria than the KSU formulation. All but one commercial sample had lower b-galactosidase activity than the KSU formulation. This may reflect the differing lactic acid bacterial populations in the frozen yogurts

    Density of States Extracted from Modified Recursion Relations

    Full text link
    We evaluate the density of states (DOS) associated with tridiagonal symmetric Hamiltonian matrices and study the effect of perturbation on one of its entries. Analysis is carried out by studying the resulting three-term recursion relation and the corresponding orthogonal polynomials of the first and second kind. We found closed form expressions for the new DOS in terms of the original one when perturbation affects a single diagonal or off-diagonal site or a combination of both. The projected DOS is also calculated numerically and its relation to the average DOS is explored both analytically and numerically.Comment: 15 pages including 8 figures (one in color

    PRM100 Converting EORTC QOl-C30 Scores to Utility Values: Is it Plausible?

    Get PDF

    Density functional theory and demixing of binary hard rod-polymer mixtures

    Full text link
    A density functional theory for a mixture of hard rods and polymers modeled as chains built of hard tangent spheres is proposed by combining the functional due to Yu and Wu for the polymer mixtures [J. Chem. Phys. {\bf 117}, 2368 (2002)] with the Schmidt's functional [Phys. Rev. E {\bf 63}, 50201 (2001)] for rod-sphere mixtures. As a simple application of the functional, the demixing transition into polymer-rich and rod-rich phases is examined. When the chain length increases, the phase boundary broadens and the critical packing fraction decreases. The shift of the critical point of a demixing transition is most noticeable for short chains.Comment: 4 pages,2 figures, in press, PR

    Multiphonon and ``hot''-phonon Isovector Electric-Dipole Excitations

    Get PDF
    We argue that a substantial increase in the cross section for Coulomb excitation in the region of the Double Giant Dipole Resonance should be expected from Coulomb excitation of excited states involved in the spreading of the one-phonon resonance, in a manifestation of the Brink-Axel phenomenon. This generates an additional fluctuating amplitude and a corresponding new term to be added incoherently to the usual cross-section. The appropriate extension of an applicable reaction calculation is considered in order to estimate this effect.Comment: 6 pages, Latex, 1 figure available on reques

    SU(2,1) Dynamics of Multiple Giant Dipole Resonance Coulomb Excitation

    Get PDF
    We construct a three-dimensional analytically soluble model of the nonlinear effects in Coulomb excitation of multiphonon Giant Dipole Resonances (GDR) based on the SU(2,1) algebra. The full 3-dimensional model predicts further enhancement of the Double GDR (DGDR) cross sections at high bombarding energies. Enhancement factors for DGDR measured in thirteen different processes with various projectiles and targets at different bombarding energies are well reproduced with the same value of the nonlinearity parameter with the exception of the anomalous case of 136^{136}Xe which requires a larger value.Comment: 10 pages, 3 Postscript figures, late

    Generation of entangled coherent states via cross phase modulation in a double electromagnetically induced transparency regime

    Full text link
    The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross phase modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, {\sl Phys. Rev. A} {\bf 65}, 33833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schr\"odinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on non-linear interaction via double-EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:5050:50 beam splitter and two photodetectors. In order to show the entanglement of a generated entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.Comment: 15 pages, 9 figures; extensively revised version; added Section

    BioConcens: Biomass and bioenergy production agriculture – consequences for soil fertility, environment, spread of animal parasites and socio-economy

    Get PDF
    The research programme called “international research cooperation and organic integrity” was commenced for a period 2006-2010. It is coordinated by DARCOF (The Danish Research Centre for Organic Farming). The whole programme, with acronym DARCOF III, consists of 15 projects (http://www.darcof.dk/research/darcofiii/index.html). One of them is BIOCONCENS - Biomass and bioenergy production in organic farming – consequences for soil fertility, environment, spread of animal parasites and socio-economy (http://www.bioconcens.elr.dk/uk/). The production of bioenergy in organic agriculture (OA) can reduce its dependency of fossil fuels and decrease green house gasses emission; consequently it will increase sustainability of organic farms. Biorefinery concept based on co-production of biogas, bioethanol and protein fodder in organic farming will be developed within the BIOCONCENS project and the background for the project and the different work packages will be presented in this paper
    • …
    corecore