36 research outputs found

    Observation of the Efimov state of the helium trimer

    Full text link
    Quantum theory dictates that upon weakening the two-body interaction in a three-body system, an infinite number of three-body bound states of a huge spatial extent emerge just before these three-body states become unbound. Three helium atoms have been predicted to form a molecular system that manifests this peculiarity under natural conditions without artificial tuning of the attraction between particles by an external field. Here we report experimental observation of this long predicted but experimentally elusive Efimov state of 4^{4}He3_{3} by means of Coulomb explosion imaging. We show spatial images of an Efimov state, confirming the predicted size and a typical structure where two atoms are close to each other while the third is far away

    Strongly Enhanced Backward Emission of Electrons in Transfer and Ionization

    Get PDF
    We studied three-dimensional angular distributions and longitudinal momentum spectra of electrons ejected in transfer plus ionization (TI), i.e., the ejection of one and the capture of a second target electron, for ion-helium collisions. We observe a pronounced structure strongly focused opposite to the projectile beam direction, which we associate with a new correlated TI mechanism proposed recently. This process contributes significantly to the total cross sections over a broad range of perturbations η, even at η as large as 0.5, where uncorrelated TI mechanisms were thought to be dominant

    Ultrafast Kapitza-Dirac effect

    Full text link
    Similar to the optical diffraction of light passing through a material grating, the Kapitza-Dirac effect occurs when an electron is diffracted by a standing light wave. In its original description the effect is time-independent. In the present work, we extend the Kapitza-Dirac concept to the time domain. By tracking the spatiotemporal evolution of a pulsed electron wave packet diffracted by a femtosecond (10 15 second) standing wave pulse in a pump-probe scheme, we observe so far unseen time-dependent diffraction patterns. The fringe spacing in the observed pattern differs from that generated by the conventional Kapitza-Dirac effect, moreover it decreases as the pump-probe delay time increases. By exploiting this time-resolved diffraction scheme, we gather access to the time evolution of the previously inaccessible phase properties of a free electron

    Angular dependence of the Wigner time delay upon tunnel ionization of H2H_{2}

    Get PDF
    More than 100 years after its discovery and its explanation in the energy domain, the duration of the photoelectric effect is still heavily studied. The emission time of a photoelectron can be quantified by the Wigner time delay. Experiments addressing this time delay for single-photon ionization became feasible during the last 10 years. A missing piece, which has not been studied, so far, is the Wigner time delay for strong-field ionization of molecules. Here we show experimental data on the Wigner time delay for tunnel ionization of H2H_{2} molecules and demonstrate its dependence on the emission direction of the electron with respect to the molecular axis. We find, that the observed changes in the Wigner time delay can be quantitatively explained by elongated/shortened travel paths of the electrons that are due to spatial shifts of the electron's birth position after tunneling. This introduces an intuitive perspective towards the Wigner time delay in strong-field ionization.Comment: 17 pages, 6 figure

    Observation of Photoion Backward Emission in Photoionization of He and N2

    Full text link
    We experimentally investigate the effects of the linear photon momentum on the momentum distributions of photoions and photoelectrons generated in one-photon ionization in an energy range of 300 eV  Eγ \leq~E_\gamma~\leq 40 keV. Our results show that for each ionization event the photon momentum is imparted onto the photoion, which is essentially the system's center of mass. Nevertheless, the mean value of the ion momentum distribution along the light propagation direction is backward-directed by 3/5-3/5 times the photon momentum. These results experimentally confirm a 90 year old prediction.Comment: 5 pages, 3 figure

    Subcycle interference upon tunnel ionization by counter-rotating two-color fields

    Get PDF
    We report on three-dimensional (3D) electron momentum distributions from single ionization of helium by a laser pulse consisting of two counter-rotating circularly polarized fields (390 and 780 nm). A pronounced 3D low-energy structure and subcycle interferences are observed experimentally and reproduced numerically using a trajectory-based semiclassical simulation. The orientation of the low-energy structure in the polarization plane is verified by numerical simulations solving the time-dependent Schrödinger equation.This Rapid Communication was supported by the DFG Priority Programme “Quantum Dynamics in Tailored Intense Fields” of the German Research Foundation (Project No. DO 604/29-1). A.H. and K.H. acknowledge support from the German Merit Foundation. A.K. acknowledges support from the Wilhelm and Else Heraeus Foundation

    Direct Determination of Absolute Molecular Stereochemistry in Gas Phase by Coulomb Explosion Imaging

    Get PDF
    Bijvoet’s method, which makes use of anomalous x-ray diffraction or dispersion, is the standard means of directly determining the absolute (stereochemical) configuration of molecules, but it requires crystalline samples and often proves challenging in structures exclusively comprising light atoms. Herein, we demonstrate a mass spectrometry approach that directly images the absolute configuration of individual molecules in the gas phase by cold target recoil ion momentum spectroscopy after laser ionization–induced Coulomb explosion. This technique is applied to the prototypical chiral molecule bromochlorofluoromethane and the isotopically chiral methane derivative bromodichloromethane

    Separating Dipole and Quadrupole Contributions to Single-Photon Double Ionization

    No full text
    We report on a kinematically complete measurement of double ionization of helium by a single 1100 eV circularly polarized photon. By exploiting dipole selection rules in the two-electron continuum state, we observed the angular emission pattern of electrons originating from a pure quadrupole transition. Our fully differential experimental data and companion ab initio nonperturbative theory show the separation of dipole and quadrupole contributions to photo-double-ionization and provide new insight into the nature of the quasifree mechanism.A. K. acknowledges support by the Wilhelm and Else Heraeus Foundation. S. K. acknowledges the funding of the EUCALL project within the European Unions Horizon 2020 Research and Innovation Programme under the Grant Agreement No. 654220. This work was supported by BMBF and DFG. We are grateful to the staff of PETRA III for excellent support during the beam time
    corecore